【題目】某網(wǎng)店正在熱銷一款電子產(chǎn)品,其成本為10元/件,銷售中發(fā)現(xiàn),該商品每天的銷售量y(件)與銷售單價(jià)x(元/件)之間存在如圖所示的關(guān)系:
![]()
(1)請求出y與x之間的函數(shù)關(guān)系式;
(2)該款電子產(chǎn)品的銷售單價(jià)為多少元時(shí),每天銷售利潤最大?最大利潤是多少元;
(3)由于武漢爆發(fā)了“新型冠狀病毒”疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出300元捐贈(zèng)給武漢,為了保證捐款后每天剩余利潤不低于450元,如何確定該款電子產(chǎn)品的銷售單價(jià)?
【答案】(1)y=10x+300;(2)20元時(shí),最大利潤為1000元;(3)單價(jià)每件不低于15元,且不高于25元.
【解析】
(1)利用待定系數(shù)法求解可得;
(2)設(shè)該款電子產(chǎn)品每天的銷售利潤為w元,根據(jù)“總利潤=每件的利潤×銷售量”可得函數(shù)解析式,配方成頂點(diǎn)式后利用二次函數(shù)的性質(zhì)求解可得;
(3)設(shè)捐款后每天剩余利潤為z元,根據(jù)題意得出z=10x2+400x3000300=10x2+400x3300,求出z=450時(shí)的x的值,求解可得.
解:(1)設(shè)y與x的函數(shù)關(guān)系式為y=kx+b,
將(20,100),(25,50)代入y=kx+b,
得
,
解得
,
∴y與x的函數(shù)關(guān)系式為y=10x+300;
(2)設(shè)該款電子產(chǎn)品每天的銷售利潤為w元,
由題意得w=(x10)y
=(x10)(10x+300)
=10x2+400x3000
=10(x20)2+1000,
∵10<0,
∴當(dāng)x=20時(shí),w有最大值,w最大值為1000.
答:該款電子產(chǎn)品銷售單價(jià)定為20元時(shí),每天銷售利潤最大,最大銷售利潤為1000元;
(3)設(shè)捐款后每天剩余利潤為z元,
由題意可得z=10x2+400x3000300=10x2+400x3300,
令z=450,即10x2+400x3300=450,
x240x+375=0,
解得x1=15,x2=25,
∵10<0,
∴當(dāng)該款電子產(chǎn)品的銷售單價(jià)每件不低于15元,且不高于25元時(shí),可保證捐款后每天剩余利潤不低于450元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年,國內(nèi)快遞業(yè)務(wù)快速發(fā)展,由于其便捷、高效,人們越來越多地通過快遞公司代辦點(diǎn)來代寄包裹.某快遞公司某地區(qū)一代辦點(diǎn)對60天中每天代寄的包裹數(shù)與天數(shù)的數(shù)據(jù)(每天代寄包裹數(shù)、天數(shù)均為整數(shù))統(tǒng)計(jì)如下:
![]()
(1)求該數(shù)據(jù)中每天代寄包裹數(shù)在
范圍內(nèi)的天數(shù);
(2)若該代辦點(diǎn)對顧客代寄包裹的收費(fèi)標(biāo)準(zhǔn)為:重量小于或等于1千克的包裹收費(fèi)8元;重量超1千克的包裹,在收費(fèi)8元的基礎(chǔ)上,每超過1千克(不足1千克的按1千克計(jì)算)需再收取2元.
①某顧客到該代辦點(diǎn)寄重量為1.6千克的包裹,求該顧客應(yīng)付多少元費(fèi)用?
②這60天中,該代辦點(diǎn)為顧客代寄的包表中有一部分重量超過2千克,且不超過5千克.現(xiàn)從中隨機(jī)抽取40件包裹的重量數(shù)據(jù)作為樣本,統(tǒng)計(jì)如下:
重量G(單位:千克) |
|
|
|
件數(shù)(單位:件) | 15 | 10 | 15 |
求這40件包裹收取費(fèi)用的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn)
如圖①,在
中,
,點(diǎn)D是
上一點(diǎn),沿
折疊
,使得點(diǎn)C恰好落在
上的點(diǎn)E處.則
的數(shù)量關(guān)系為______;
________;
(2)問題解決
如圖②,若(1)中
,其他條件不變,請猜想
之間的關(guān)系,并證明你的結(jié)論;
(3)類比探究
如圖③,在四邊形
中,
,連接
,點(diǎn)E是
上一點(diǎn),沿
折疊
使得點(diǎn)D正好落在
上的點(diǎn)F處,若
,直接寫出
的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,一次函數(shù)
的圖象由函數(shù)
的圖象平移得到,且經(jīng)過點(diǎn)(1,2).
(1)求這個(gè)一次函數(shù)的解析式;
(2)當(dāng)
時(shí),對于
的每一個(gè)值,函數(shù)
的值大于一次函數(shù)
的值,直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2019年某中學(xué)舉行的冬季陽徑運(yùn)動(dòng)會(huì)上,參加男子跳高的15名運(yùn)動(dòng)員的成績?nèi)绫硭荆?/span>
成績(m) | 1.80 | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 |
人數(shù) | 1 | 2 | 4 | 3 | 3 | 2 |
這些運(yùn)動(dòng)員跳高成績的中位數(shù)和眾數(shù)分別是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC是4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測得支架B端的仰角是45°,在水池的內(nèi)沿E測得支架A端的仰角是50°(點(diǎn)C、E、D在同一直線上),求小水池的寬DE.(結(jié)果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線11:y=k1x+3分別與x軸,y軸交于A(﹣3,0),B兩點(diǎn),與直線l2:y=k2x交于點(diǎn)C,S△AOC=9.
(1)求tan∠BAO的值;
(2)求出直線l2的解析式;
(3)P為線段AC上一點(diǎn)(不含端點(diǎn)),連接OP,一動(dòng)點(diǎn)H從點(diǎn)O出發(fā),沿線段OP以每秒1個(gè)單位長度的速度運(yùn)動(dòng)到P,再沿線段PC以每秒
個(gè)單位長度的速度運(yùn)動(dòng)到點(diǎn)C后停止,請直接寫出點(diǎn)H在整個(gè)運(yùn)動(dòng)過程的最少用時(shí).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一次打籃球時(shí),籃球傳出后的運(yùn)動(dòng)路線為如圖所示的拋物線,以小明所站立的位置為原點(diǎn)O建立平面直角坐標(biāo)系,籃球出手時(shí)在O點(diǎn)正上方1m處的點(diǎn)P.已知籃球運(yùn)動(dòng)時(shí)的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y=-
x2+x+c.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)球在運(yùn)動(dòng)的過程中離地面的最大高度;
(3)小亮手舉過頭頂,跳起后的最大高度為BC=2.5m,若小亮要在籃球下落過程中接到球,求小亮離小明的最短距離OB.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,
的直角頂點(diǎn)
在
軸的正半軸上,頂點(diǎn)
在第一象限,函數(shù)
的圖象與邊
交于點(diǎn)
,并且點(diǎn)
為邊
的中點(diǎn).若
的面積為12,則
的值為______.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com