1.下列在廚房中發(fā)生的變化是物理變化的是
A.榨取果汁 B.冬瓜腐爛 C.鐵鍋生銹 D.煤氣燃燒
29.問題解決
解:方法一:如圖(1-1),連接
.
由題設(shè),得四邊形
和四邊形
關(guān)于直線
對(duì)稱.
∴
垂直平分
.∴
··········································· 1分
∵四邊形
是正方形,∴![]()
∵
設(shè)
則![]()
![]()
在
中,
.
∴
解得
,即
················································ 3分
在
和在
中,
,
,
![]()
······································································· 5分
設(shè)
則
∴![]()
解得
即
················································································· 6分
∴
··································································································· 7分
方法二:同方法一,
········································································· 3分
如圖(1-2),過點(diǎn)
做
交
于點(diǎn)
,連接![]()
∵
∴四邊形
是平行四邊形.
∴![]()
同理,四邊形
也是平行四邊形.∴![]()
∵![]()
![]()
在
與
中
∴
····························· 5分
∵
······························································ 6分
∴
································································································· 7分
類比歸納
(或
);
;
·········································································· 10分
聯(lián)系拓廣
···································································································· 12分
26.(1)解:由
得
點(diǎn)坐標(biāo)為![]()
由
得
點(diǎn)坐標(biāo)為![]()
∴
··················································································· (2分)
由
解得
∴
點(diǎn)的坐標(biāo)為
···································· (3分)
∴
··························································· (4分)
(2)解:∵點(diǎn)
在
上且![]()
∴
點(diǎn)坐標(biāo)為
······················································································ (5分)
又∵點(diǎn)
在
上且![]()
∴
點(diǎn)坐標(biāo)為
······················································································ (6分)
∴
··········································································· (7分)
(3)解法一:
當(dāng)
時(shí),如圖1,矩形
與
重疊部分為五邊形
(
時(shí),為四邊形
).過
作
于
,則![]()
∴
即
∴![]()
![]()
∴![]()
即
··································································· (10分)
(2009年山西省太原市)29.(本小題滿分12分)
問題解決
如圖(1),將正方形紙片
折疊,使點(diǎn)
落在
邊上一點(diǎn)
(不與點(diǎn)
,
重合),壓平后得到折痕
.當(dāng)
時(shí),求
的值.
類比歸納
在圖(1)中,若
則
的值等于 ;若
則
的值等于 ;若
(
為整數(shù)),則
的值等于 .(用含
的式子表示)
聯(lián)系拓廣
如圖(2),將矩形紙片
折疊,使點(diǎn)
落在
邊上一點(diǎn)
(不與點(diǎn)
重合),壓平后得到折痕
設(shè)
則
的值等于 .(用含
的式子表示)
26.(2009年山西省)(本題14分)如圖,已知直線
與直線
相交于點(diǎn)
分別交
軸于
兩點(diǎn).矩形
的頂點(diǎn)
分別在直線
上,頂點(diǎn)
都在
軸上,且點(diǎn)
與點(diǎn)
重合.
(1)求
的面積;
(2)求矩形
的邊
與
的長(zhǎng);
(3)若矩形
從原點(diǎn)出發(fā),沿
軸的反方向以每秒1個(gè)單位長(zhǎng)度的速度平移,設(shè)
移動(dòng)時(shí)間為
秒,矩形
與
重疊部分的面積為
,求
關(guān)
![]()
的函數(shù)關(guān)系式,并寫出相應(yīng)的
的取值范圍.
23.(2009年河南省)(11分)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD
向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E
①過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?
請(qǐng)直接寫出相應(yīng)的t值.
![]()
解.(1)點(diǎn)A的坐標(biāo)為(4,8) …………………1分
將A (4,8)、C(8,0)兩點(diǎn)坐標(biāo)分別代入y=ax2+bx
8=16a+4b
得
0=64a+8b
解 得a=-
,b=4
∴拋物線的解析式為:y=-
x2+4x
…………………3分
(2)①在Rt△APE和Rt△ABC中,tan∠PAE=
=
,即
=![]()
∴PE=
AP=
t.PB=8-t.
∴點(diǎn)E的坐標(biāo)為(4+
t,8-t).
∴點(diǎn)G的縱坐標(biāo)為:-
(4+
t)2+4(4+
t)=-
t2+8. …………………5分
∴EG=-
t2+8-(8-t)
=-
t2+t.
∵-
<0,∴當(dāng)t=4時(shí),線段EG最長(zhǎng)為2.
…………………7分
②共有三個(gè)時(shí)刻. …………………8分
t1=
, t2=
,t3=
.
…………………11分
26.
解:(1)1,
;
(2)作QF⊥AC于點(diǎn)F,如圖3, AQ = CP= t,∴
.
由△AQF∽△ABC,
,
得
.∴
.
∴
,
即
.
(3)能.
①當(dāng)DE∥QB時(shí),如圖4.
∵DE⊥PQ,∴PQ⊥QB,四邊形QBED是直角梯形.
此時(shí)∠AQP=90°.
由△APQ ∽△ABC,得
,
即
. 解得
.
②如圖5,當(dāng)PQ∥BC時(shí),DE⊥BC,四邊形QBED是直角梯形.
此時(shí)∠APQ =90°.
由△AQP ∽△ABC,得
,
即
. 解得
.
(4)
或
.
[注:①點(diǎn)P由C向A運(yùn)動(dòng),DE經(jīng)過點(diǎn)C.
方法一、連接QC,作QG⊥BC于點(diǎn)G,如圖6.
,![]()
.
由
,得
,解得
.
方法二、由
,得
,進(jìn)而可得
,得
,∴
.∴
.
②點(diǎn)P由A向C運(yùn)動(dòng),DE經(jīng)過點(diǎn)C,如圖7.
,
]
26.(2009年河北省)(本小題滿分12分)
如圖16,在Rt△ABC中,∠C=90°,AC = 3,AB
= 5.點(diǎn)P從點(diǎn)C出發(fā)沿CA以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后立刻以原來的速度沿AC返回;點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng).伴隨著P、Q的運(yùn)動(dòng),DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線QB-BC-CP于點(diǎn)E.點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)當(dāng)t = 2時(shí),AP = ,點(diǎn)Q到AC的距離是 ;
(2)在點(diǎn)P從C向A運(yùn)動(dòng)的過程中,求△APQ的面積S與
t的函數(shù)關(guān)系式;(不必寫出t的取值范圍)
(3)在點(diǎn)E從B向C運(yùn)動(dòng)的過程中,四邊形QBED能否成
為直角梯形?若能,求t的值.若不能,請(qǐng)說明理由;
(4)當(dāng)DE經(jīng)過點(diǎn)C 時(shí),請(qǐng)直接寫出t的值.
26.解:(1)由已知,得
,
,
,
.
![]()
.············································································································ (1分)
設(shè)過點(diǎn)
的拋物線的解析式為
.
將點(diǎn)
的坐標(biāo)代入,得
.
將
和點(diǎn)
的坐標(biāo)分別代入,得
··································································································· (2分)
解這個(gè)方程組,得![]()
故拋物線的解析式為
.··························································· (3分)
(2)
成立.························································································· (4分)
點(diǎn)
在該拋物線上,且它的橫坐標(biāo)為
,
![]()
點(diǎn)
的縱坐標(biāo)為
.······················································································· (5分)
設(shè)
的解析式為
,
將點(diǎn)
的坐標(biāo)分別代入,得
解得![]()
![]()
的解析式為
.········································································ (6分)
![]()
,
.··························································································· (7分)
過點(diǎn)
作
于點(diǎn)
,
則
.
,
.
又
,
.
.
.··········································································································· (8分)
.
(3)
點(diǎn)
在
上,
,
,則設(shè)
.
![]()
,
,
.
①若
,則
,
解得
.![]()
,此時(shí)點(diǎn)
與點(diǎn)
重合.
![]()
.··········································································································· (9分)
②若
,則
,
解得
,
,此時(shí)
軸.
與該拋物線在第一象限內(nèi)的交點(diǎn)
的橫坐標(biāo)為1,
點(diǎn)
的縱坐標(biāo)為
.
![]()
.······································································································· (10分)
③若
,則
,
解得
,
,此時(shí)
,
是等腰直角三角形.
過點(diǎn)
作
軸于點(diǎn)
,
則
,設(shè)
,
.
.
解得
(舍去).
.··········································· (12分)
綜上所述,存在三個(gè)滿足條件的點(diǎn)
,
即
或
或
.
(2009年重慶綦江縣)26.(11分)如圖,已知拋物線
經(jīng)過點(diǎn)
,拋物線的頂點(diǎn)為
,過
作射線
.過頂點(diǎn)
平行于
軸的直線交射線
于點(diǎn)
,
在
軸正半軸上,連結(jié)
.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)
從點(diǎn)
出發(fā),以每秒1個(gè)長(zhǎng)度單位的速度沿射線
運(yùn)動(dòng),設(shè)點(diǎn)
運(yùn)動(dòng)的時(shí)間為
.問當(dāng)
為何值時(shí),四邊形
分別為平行四邊形?直角梯形?等腰梯形?
(3)若
,動(dòng)點(diǎn)
和動(dòng)點(diǎn)
分別從點(diǎn)
和點(diǎn)
同時(shí)出發(fā),分別以每秒1個(gè)長(zhǎng)度單位和2個(gè)長(zhǎng)度單位的速度沿
和
運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為![]()
,連接
,當(dāng)
為何值時(shí),四邊形
的面積最小?并求出最小值及此時(shí)
的長(zhǎng).
*26.解:(1)
拋物線
經(jīng)過點(diǎn)
,
·························································································· 1分
二次函數(shù)的解析式為:
·················································· 3分
(2)
為拋物線的頂點(diǎn)
過
作
于
,則
,
··················································· 4分
![]()
![]()
當(dāng)
時(shí),四邊形
是平行四邊形
················································ 5分
當(dāng)
時(shí),四邊形
是直角梯形
過
作
于
,
則![]()
(如果沒求出
可由
求
)
····························································································· 6分
當(dāng)
時(shí),四邊形
是等腰梯形
![]()
綜上所述:當(dāng)
、5、4時(shí),對(duì)應(yīng)四邊形分別是平行四邊形、直角梯形、等腰梯形.·· 7分
(3)由(2)及已知,
是等邊三角形
則![]()
過
作
于
,則
········································································· 8分
![]()
=
·································································································· 9分
當(dāng)
時(shí),
的面積最小值為
··································································· 10分
此時(shí)![]()
······················································ 11分
26.(2009年重慶市)已知:如圖,在平面直角坐標(biāo)系
中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過原點(diǎn)O作∠AOC的平分線交AB于點(diǎn)D,連接DC,過點(diǎn)D作DE⊥DC,交OA于點(diǎn)E.
(1)求過點(diǎn)E、D、C的拋物線的解析式;
(2)將∠EDC繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn)后,角的一邊與y軸的正半軸交于點(diǎn)F,另一邊與線段OC交于點(diǎn)G.如果DF與(1)中的拋物線交于另一點(diǎn)M,點(diǎn)M的橫坐標(biāo)為
,那么EF=2GO是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(3)對(duì)于(2)中的點(diǎn)G,在位于第一象限內(nèi)的該拋物線上是否存在點(diǎn)Q,使得直線GQ與AB的交點(diǎn)P與點(diǎn)C、G構(gòu)成的△PCG是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
25.(2009年北京)如圖,在平面直角坐標(biāo)系
中,
三個(gè)機(jī)戰(zhàn)的坐標(biāo)分別為
,
,
,延長(zhǎng)AC到點(diǎn)D,使CD=
,過點(diǎn)D作DE∥AB交BC的延長(zhǎng)線于點(diǎn)E.
(1)求D點(diǎn)的坐標(biāo);
(2)作C點(diǎn)關(guān)于直線DE的對(duì)稱點(diǎn)F,分別連結(jié)DF、EF,若過B點(diǎn)的直線
將四邊形CDFE分成周長(zhǎng)相等的兩個(gè)四邊形,確定此直線的解析式;
(3)設(shè)G為y軸上一點(diǎn),點(diǎn)P從直線
與y軸的交點(diǎn)出發(fā),先沿y軸到達(dá)G點(diǎn),再沿GA到達(dá)A點(diǎn),若P點(diǎn)在y軸上運(yùn)動(dòng)的速度是它在直線GA上運(yùn)動(dòng)速度的2倍,試確定G點(diǎn)的位置,使P點(diǎn)按照上述要求到達(dá)A點(diǎn)所用的時(shí)間最短。(要求:簡(jiǎn)述確定G點(diǎn)位置的方法,但不要求證明)
![]()
![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com