【題目】已知二次函數
與x軸最多有一個交點,現有以下三個結論:①該拋物線的對稱軸在y軸左側;②關于x的方程
無實數根;③
≥0.其中,正確結論的個數為( )
A. 0 B. 1 C. 2 D. 3
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負方向平移a個單位長度后,點C恰好落在雙曲線在第一象限的分支上,則a的值是_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點 O 是等邊△ABC 內一點,∠AOB=110°,∠BOC=a.將△BOC 繞點 C 按順時針方向旋轉 60°得△ADC,則△ADC≌△BOC,連接 OD.
(1)求證:△COD 是等邊三角形;
(2)當α=120°時,試判斷 AD 與 OC 的位置關系,并說明理由;
(3)探究:當 a 為多少度時,△AOD 是等腰三角形?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點,頂點為D1;將C1繞點A1旋轉180°得到C2,頂點為D2;C1與C2組成一個新的圖象,垂直于y軸的直線l與新圖象交于點P1(x1,y1),P2(x2,y2),與線段D1D2交于點P3(x3,y3),設x1,x2,x3均為正數,t=x1+x2+x3,則t的取值范圍是( )
![]()
A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知P是⊙O外一點,PO交⊙O于點C,OC=CP=4,弦AB⊥OC,劣弧AB的度數為120°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=
,求圖中陰影部分的面積.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校開展“青少年科技創新比賽”活動,“喜洋洋”代表隊設計了一個遙控車沿直線軌道AC做勻速直線運動的模型.甲、乙兩車同時分別從A,B出發,沿軌道到達C處,在AC上,甲的速度是乙的速度的1.5倍,設t分后甲、乙兩遙控車與B處的距離分別為d1,d2(單位:米),則d1,d2與t的函數關系如圖,試根據圖象解決下列問題.
![]()
(1)填空:乙的速度v2=________米/分;
(2)寫出d1與t的函數表達式;
(3)若甲、乙兩遙控車的距離超過10米時信號不會產生相互干擾,試探究什么時間兩遙控車的信號不會產生相互干擾?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在x軸上,OA=4,將線段OA繞點O順時針旋轉120°至OB的位置.
(1)求點B的坐標;
(2)求經過點A.O、B的拋物線的解析式;
(3)在此拋物線的對稱軸上,是否存在點P,使得以點P、O、B為頂點的三角形是等腰三角形?若存在,求點P的坐標;若不存在,說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直線y=﹣
x+a(a>0)分別與x 軸、y 軸交于A、B 兩點,C、D 的坐標分別為 C(0,b)、D(2a,b﹣a)(b>a).
(1)試判斷四邊形ABCD的形狀,并說明理由;
(2)若點C、D關于直線AB的對稱點分別為C′、D′.
①當b=3時,試問:是否存在滿足條件的a,使得△BC′D′面積為
?
②當點C′恰好落在x軸上時,試求a 與b的函數表達式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com