已知二次函數f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,試證明f(x)必有兩個零點;
(2)若對x1,x2∈R,且x1<x2,f(x1)≠f(x2),方程f(x)=
[f(x1)+f(x2)]有兩個不等實根,證明必有一實根屬于(x1,x2).
證明:(1)∵f(1)=0,∴a+b+c=0.
又∵a>b>c,∴a>0,c<0,即ac<0.
又∵Δ=b2-4ac≥-4ac>0,
∴方程ax2+bx+c=0有兩個不等實根,
∴函數f(x)有兩個零點.
(2)令g(x)=f(x)-
[f(x1)+f(x2)],
則g(x1)=f(x1)-
[f(x1)+f(x2)]=
[f(x1)-f(x2)]
g(x2)=f(x2)-
[f(x1)+f(x2)]=
[f(x2)-f(x1)],
∴g(x1)g(x2)=
[f(x1)-f(x2)]·
[f(x2)-f(x1)]
=-
[f(x1)-f(x2)]2.
∵f(x1)≠f(x2),∴g(x1)g(x2)<0.
∴g(x)=0在(x1,x2)內必有一實根.
科目:高中數學 來源: 題型:
| 1 |
| 2 |
| 5 |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| 2 |
| 3 |
| x |
| 1 |
| 10 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| bx-1 | a2x+2b |
查看答案和解析>>
科目:高中數學 來源: 題型:
| bx-1 | a2x+2b |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com