已知橢圓
的中心在坐標原點,焦點在
軸上,離心率為
,且過雙曲線
的頂點.
(1)求橢圓
的標準方程;
(2)命題:“設
、
是雙曲線
上關于它的中心對稱的任意兩點,
為該雙曲線上的動點,若直線
、
均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個關于橢圓
的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關于方程
(
,
不同時為負數)的曲線的統一的一般性命題(不必證明).
(1)
.
(2)關于橢圓
的正確命題是:設
、
是橢圓
上關于它
的中心對稱的任意兩點,
為該橢圓上的動點,若直線
、
均存在斜率,
則它們的斜率之積為定值.
(定值)
(3)關于方程
(
,
不同時為負數)的曲線的統一的一般性命題是:
設
、
是方程
(
,
不同時為負數)的曲線上關于它的中心對稱的任意兩點,
為該曲線上的動點,若直線
、
均存在斜率,則它們的斜率之積為定值.
解析試題分析:(1)設橢圓
的方程為
,半焦距為
,
則
,
,
橢圓
的方程為
.
(2)關于橢圓
的正確命題是:設
、
是橢圓
上關于它
的中心對稱的任意兩點,
為該橢圓上的動點,若直線
、
均存在斜率,
則它們的斜率之積為定值.
證明如下:
設點
,
,
,
直線
、
的斜率分別為
,
則
,
點
,
在橢圓上,![]()
,且
,![]()
, 即
,
所以,
(定值)
(3)關于方程
(
,
不同時為負數)的曲線的統一的一般性命題是:
設
、
是方程
(
,
不同時為負數)的曲線上關于它的中心對稱的任意兩點,
為該曲線上的動點,若直線
、
均存在斜率,則它們的斜率之積為定值.
考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關系。
點評:中檔題,求橢圓的標準方程,主要運用了橢圓的幾何性質,注意明確焦點軸和a,b,c的關系。曲線關系問題,往往通過聯立方程組,得到一元二次方程,運用韋達定理。本題(2)注意將斜率用坐標表示出來,易于發現關系。本題得到一般性結論,對指導學生學習探究很有裨益。
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的右焦點
在圓
上,直線
交橢圓于
、
兩點.
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 若OM⊥ON(
為坐標原點),求
的值;
(Ⅲ)
設點
關于
軸的對稱點為
(
與
不重合),且直線![]()
與
軸交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點為
,點
是拋物線上的一點,且其縱坐標為4,
.
(1)求拋物線的方程;
(2)設點
是拋物線上的兩點,
的角平分線與
軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線
過點
,求弦
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線
,![]()
(1)化
的方程為普通方程,并說明它們分別表示什么曲線?
(2)若
上的點P對應的參數為
,Q為
上的動點,求PQ的中點M到直線
的距離的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓
過點
,離心率為
,左、右焦點分別為
、
.點
為直線
上且不在
軸上的任意一點,直線
和
與橢圓的交點分別為
、
和
、
,
為坐標原點.設直線
、
的斜率分別為
、
.![]()
(i)證明:
;
(ii)問直線
上是否存在點
,使得直線
、
、
、
的斜率
、
、
、
滿足
?若存在,求出所有滿足條件的點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
、
分別為橢圓
:
的上、下焦點,其中
也是拋物線
:
的焦點,點
是
與
在第二象限的交點,且
。![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點
(1,3)和圓
:
,過點
的動直線
與圓
相交于不同的兩點
,在線段
取一點
,滿足:
,
(
且
)。
求證:點
總在某定直線上。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓
的右焦點為
,右準線為
,離心率為
,點
在橢圓上,以
為圓心,
為半徑的圓與
的兩個公共點是
.![]()
(1)若
是邊長為
的等邊三角形,求圓的方程;
(2)若
三點在同一條直線
上,且原點到直線
的距離為
,求橢圓方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
的左右焦點分別為
、
,由4個點
、
、
和
組成一個高為
,面積為
的等腰梯形.
(1)求橢圓的方程;
(2)過點
的直線和橢圓交于
、
兩點,求![]()
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com