【題目】如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸上,反比例函數y=
(x>0)的圖象經過菱形對角線的交點A,且與邊BC交于點F,點A的坐標為(4,2). ![]()
(1)求反比例函數的表達式;
(2)求點F的坐標.
【答案】
(1)解:∵反比例函數y=
的圖象經過點A,A點的坐標為(4,2),
∴k=2×4=8,
∴反比例函數的解析式為y= ![]()
(2)解:過點A作AM⊥x軸于點M,過點C作CN⊥x軸于點N,
由題意可知,CN=2AM=4,ON=2OM=8,
∴點C的坐標為C(8,4),
設OB=x,則BC=x,BN=8﹣x,
在Rt△CNB中,x2﹣(8﹣x)2=42,
解得:x=5,
∴點B的坐標為B(5,0),
設直線BC的函數表達式為y=ax+b,直線BC過點B(5,0),C(8,4),
∴
,
解得:
,
∴直線BC的解析式為y=
x+
,
根據題意得方程組
,
解此方程組得:
或 ![]()
∵點F在第一象限,
∴點F的坐標為F(6,
).
![]()
【解析】(1)將點A的坐標代入到反比例函數的一般形式后求得k值即可確定函數的解析式;(2)過點A作AM⊥x軸于點M,過點C作CN⊥x軸于點N,首先求得點B的坐標,然后求得直線BC的解析式,求得直線和拋物線的交點坐標即可.本題考查了反比例函數圖象上的點的特點、待定系數法確定反比例函數的解析式等知識,解題的關鍵是能夠根據點C的坐標確定點B的坐標,從而確定直線的解析式.
【考點精析】根據題目的已知條件,利用菱形的性質的相關知識可以得到問題的答案,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數學 來源: 題型:
【題目】如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上):
①把△ABC沿BA方向平移,請在網格中畫出當點A移動到點A1時的△A1B1C1;
②把△A1B1C1繞點A1按逆時針方向旋轉90°后得到△A2B2C2 , 如果網格中小正方形的邊長為1,求點B1旋轉到B2的路徑長.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了貫徹落實健康第一的指導思想,促進學生全面發展,國家每年都要對中學生進行一次體能測試,測試結果分“優秀”、“良好”、“及格”、“不及格”四個等級,某學校從七年級學生中隨機抽取部分學生的體能測試結果進行分析,并根據收集的數據繪制了兩幅不完整的統計圖,請根據這兩幅統計圖中的信息回答下列問題 ![]()
(1)本次抽樣調查共抽取多少名學生?
(2)補全條形統計圖.
(3)在扇形統計圖中,求測試結果為“良好”等級所對應圓心角的度數.
(4)若該學校七年級共有600名學生,請你估計該學校七年級學生中測試結果為“不及格”等級的學生有多少名?
(5)請你對“不及格”等級的同學提一個友善的建議(一句話即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】教室里有4排日光燈,每排燈各由一個開關控制,但燈的排數序號與開關序號不一定對應,其中控制第二排燈的開關已壞(閉合開關時燈也不亮).
(1)將4個開關都閉合時,教室里所有燈都亮起的概率是;
(2)在4個開關都閉合的情況下,不知情的雷老師準備做光學實驗,由于燈光太強,他需要關掉部分燈,于是隨機將4個開關中的2個斷開,請用列表或畫樹狀圖的方法,求恰好關掉第一排與第三排燈的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB的垂直平分線分別交AB、BC于點D、E,AC的垂直平分線分別交AC、BC于點F、G,若∠BAC=100°,則∠EAG=_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解答
(1)閱讀理解:![]()
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.
中線AD的取值范圍是;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數量關系,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△AOB的頂點O在直線l上,且AO=AB.
![]()
(1)畫出△AOB關于直線l成軸對稱的圖形△COD,且使點A的對稱點為點C ;
(2)在(1)的條件下,AC與BD的位置關系是________;
(3)在(1)、(2)的條件下,聯結AD,如果∠ABD=2∠ADB,求∠AOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠現在平均每天比原計劃多生產 50 臺機器,現在生產 600 臺機器所需時間與原計劃生產 450 臺機器所需時間相同.
(1)現在平均每天生產多少臺機器;
(2)生產 3000 臺機器,現在比原計劃提前幾天完成.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一淘寶店主購進
、
兩款
恤在網上進行銷售,
款
恤每件價格
元,
款
恤每件價格
元,第一批共購買
件.
(1)該淘寶店主第一批購進的
恤的總費用不超過
元,求
款
恤最少購買多少件?
(2)由于銷售情況良好,該淘寶店主打算購進第二批
恤,購進的
、
兩款
恤件數之比為
,價格保持第一批的價格不變;第三批購進
款
恤的價格在第一批購買的價格上每件減少了
元,
款
恤的價格比第一批購進的價格上每件增加了
元,
款
恤的數量比第二批增加了
,
款
恤的數量比第二批減少了
,第二批與第三批購進的
恤的總費用相同,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com