【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標系中,AB在x軸上,點G與點A重合,點F在AD上,三角板的直角邊EF交BC于點M,反比例函數y=
(x>0)的圖象恰好經過點F,M.若直尺的寬CD=3,三角板的斜邊FG=
,則k=_____.
![]()
科目:初中數學 來源: 題型:
【題目】新龜兔賽跑的故事:龜兔從同一地點同時出發后,兔子很快把烏龜遠遠甩在后頭.驕傲自滿的兔子覺得自己遙遙領先,就躺在路邊呼呼大睡起來.當它一覺醒來,發現烏龜已經超過它,于是奮力直追,最后同時到達終點.用S1、S2分別表示烏龜和兔子賽跑的路程,t為賽跑時間,則下列圖象中與故事情節相吻合的是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解學生對網上在線學習效果的滿意度,某校設置了:非常滿意、滿意、基本滿意、不滿意四個選項,隨機抽查了部分學生,要求每名學生都只選其中的一項,并將抽查結果繪制成如圖統計圖(不完整).
![]()
請根據圖中信息解答下列問題:
(1)求被抽查的學生人數,并補全條形統計圖;(溫馨提示:請畫在答題卷相對應的圖上)
(2)求扇形統計圖中表示“滿意”的扇形的圓心角度數;
(3)若該校共有1000名學生參與網上在線學習,根據抽查結果,試估計該校對學習效果的滿意度是“非常滿意”或“滿意”的學生共有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】經過實驗獲得兩個變量x(x>0),y(y>0)的一組對應值如下表.
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 6 | 2.9 | 2 | 1.5 | 1.2 | 1 |
(1)請畫出相應函數的圖象,并求出函數表達式.
(2)點A(x1,y1),B(x2,y2)在此函數圖象上.若x1<x2,則y1,y2有怎樣的大小關系?請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,△ABC的頂點A,C分別是直線y=﹣
x+4與坐標軸的交點,點B的坐標為(﹣2,0),點D是邊AC上的一點,DE⊥BC于點E,點F在邊AB上,且D,F兩點關于y軸上的某點成中心對稱,連結DF,EF.設點D的橫坐標為m,EF2為l,請探究:
①線段EF長度是否有最小值.
②△BEF能否成為直角三角形.
小明嘗試用“觀察﹣猜想﹣驗證﹣應用”的方法進行探究,請你一起來解決問題.
(1)小明利用“幾何畫板”軟件進行觀察,測量,得到l隨m變化的一組對應值,并在平面直角坐標系中以各對應值為坐標描點(如圖2).請你在圖2中連線,觀察圖象特征并猜想l與m可能滿足的函數類別.
(2)小明結合圖1,發現應用三角形和函數知識能驗證(1)中的猜想,請你求出l關于m的函數表達式及自變量的取值范圍,并求出線段EF長度的最小值.
(3)小明通過觀察,推理,發現△BEF能成為直角三角形,請你求出當△BEF為直角三角形時m的值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】鐘南山院士談到防護新型冠狀病毒肺炎時說:“我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內注意通風,勤洗手,多運動,少熬夜.”某社區為了加強社區居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區居民在線參與作答《2020年新型冠狀病毒防治全國統一考試(全國卷)》試卷(滿分100分),社區管理員隨機從有400人的某小區抽取40名人員的答卷成績,并對他們的成績(單位:分)統計如下:
85 80 95 100 90 95 85 65 75 85
90 90 70 90 100 80 80 90 95 75
80 60 80 95 85 100 90 85 85 80
95 75 80 90 70 80 95 75 100 90
根據數據繪制了如下的表格和統計圖:
![]()
![]()
根據上面提供的信息,回答下列問題:
(1)統計表中的a= ,b= ;c= ,d=
(2)請補全條形統計圖;
(3)根據抽樣調查結果,請估計該小區答題成績為“C級”的有多少人?
(4)該社區有2名男管理員和2名女管理員,現從中隨機挑選2名管理員參加“社區防控”宣傳活動,請用樹狀圖法或列表法求出恰好選中“1男1女”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l:y=
x,過點A(0,1)作y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1作y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2;……按此作法繼續下去,則點A2020的坐標為______________.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,拋物線
交
正半軸于點
,將拋物線
先向右平移
個單位,再向下平移
個單位得到拋物線
,
與
交于點
,直線
交
于點
.
![]()
(1)求拋物線
的解析式;
(2)點
是拋物線
上
(含端點)間的一點,作
軸交拋物線
于點
,連按
,
.當
的面積為
時, 求點
的坐標;
(3)如圖②,將直線
向上平移,交拋物線
于點
、
,交拋物線
于點
、
,試判斷
的值是否為定值,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com