(12分)已知函數(shù)f(x)=sinωx(
cosωx+sinωx)+
(ω∈R,x∈R)最小正周期為π,且圖象關(guān)于直線x=
π對稱.
(1)求f(x)的最大值及對應(yīng)的x的集合;
(2)若直線y=a與函數(shù)y=1-f(x),x∈[0,
]的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的范圍.
(1)最大值為2.此時(shí)x=k
-
,k
Z;(2)
【解析】本試題主要是考查了三角函數(shù)的圖像與性質(zhì),以及三角恒等變換的綜合運(yùn)用。求解函數(shù)圖像與圖像的交點(diǎn)問題。
(1)先將三角函數(shù)化簡為單一三角函數(shù),利用對稱軸的性質(zhì),求解最值
(2)由于三角函數(shù)圖像與直線y=a有且只有一個(gè)公點(diǎn),則結(jié)合圖像法得到參數(shù)a的取值范圍。
解:(1)f(x)=![]()
=
…………………………2分
=
T=
………………3分
若
=1 ,
此時(shí)
不是對稱軸………4分
若
=-1 ,
此時(shí)
是對稱軸…5分
最大值為2.此時(shí)2x+
=2k
-![]()
x=k
-
,k
Z……………………6分
(2)
,的圖象與直線y=a的圖象有且只有一個(gè)公點(diǎn)
…………9分
……………………12分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:張家港市后塍高級中學(xué)2006~2007年第一學(xué)期高三數(shù)學(xué)十二月調(diào)研測試卷 題型:044
| |||||||||||
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(12) 題型:013
已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過原點(diǎn),且在x=±1處的切線斜率均為-1.有以下命題:
①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0;④若對
x∈[-2,2],k≤
恒成立,則k的最大值為2.其中正確命題的個(gè)數(shù)為
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省瑞安中學(xué)2012屆高三10月月考數(shù)學(xué)文科試題 題型:044
已知函數(shù)
,g(x)=lnx.
(1)設(shè)F(x)=f(x)+g(x),當(dāng)a=2時(shí),求F(x)在
上的單調(diào)區(qū)間;
(2)在條件(1)下,若對任意
(e為自然對數(shù)的底數(shù))均有|F(x1)-F(x2)|<3m+
-6恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)G(x)=f(x)-g(x)在x=1處的切線與坐標(biāo)軸圍成的三角形面積為S,存在α∈N*且a≠4使得t≤S成立,求最大的整數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=ax3+
x2在x=-1處取得極值,記g(x)=
,程序框圖如圖所示,若輸出的結(jié)果S>
,則判斷框中可以填入的關(guān)于n的判斷條件是 ( )
![]()
A.n≤2 011? B.n≤2 012?
C.n>2 011? D.n>2 012?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西贛州四所重點(diǎn)中學(xué)高三上學(xué)期期末聯(lián)考理數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)f(x)=ax3+
x2在x=-1處取得極大值,記g(x)=
。程序框圖如圖所示,若輸出的結(jié)果S=
,則判斷框中可以填入的關(guān)于n的判斷條件是( )
![]()
A.n≤2013 B.n≤2014 C.n>2013 D.n>2014
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com