【題目】已知拋物線C:y2=2px(p>0),其焦點為F(1,0),過F作斜率為k的直線交拋物線C于A、B兩點,交其準(zhǔn)線于P點.![]()
(1)求P的值;
(2)設(shè)|PA|+|PB|=λ|PA||PB||PF|,若k∈[
,1],求實數(shù)λ的取值范圍.
【答案】
(1)解:因為焦點F(1,0),所以
,解得p=2.
(2)解:由題可知:直線AB的方程為y=k(x﹣1)(k≠0),準(zhǔn)線的方程為x=﹣1
設(shè)A(x1,y1),B(x2,y2),則
.由
消去y得k2x2﹣(2k2+4)x+k2=0,
故
.
由|PA|+|PB|=λ|PA||PB||PF|得 ![]()
解得
.
因為k∈[
,1],所以λ∈[
,
].
【解析】(1)運用拋物線的焦點坐標(biāo),計算即可得到所求方程;(2)由題可知:直線AB的方程為y=k(x﹣1)(k≠0),準(zhǔn)線l的方程為x=﹣1,設(shè)A(x1 , y1),B(x2 , y2),聯(lián)立拋物線的方程,運用韋達(dá)定理和弦長公式,化簡整理,運用不等式的性質(zhì),即可得到所求范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義域為R的偶函數(shù)f(x)在[0,+∞)上是增函數(shù),則不等式f(log4x)+f(log0.25x)≤2f(1)的解集為( )
A. [
,2] B. [
,4] C. [
,2] D. [
,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a=cos61°cos127°+cos29°cos37°,
,
,則a,b,c的大小關(guān)系是( )
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動直線l:(3λ+1)x+(1﹣λ)y+6﹣6λ=0過定點P,則點P的坐標(biāo)為 , 若直線l與x軸的正半軸有公共點,則λ的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
;
(1)當(dāng)
時,若
,求
的取值范圍;
(2)若定義在
上奇函數(shù)
滿足
,且當(dāng)
時,
,
求
在
上的反函數(shù)
;
(3)對于(2)中的
,若關(guān)于
的不等式
在
上恒成立,求實
數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在其定義域上既是奇函數(shù)又是增函數(shù)的是( )
A.y=logax
B.y=x3+x
C.y=3x
D.y=﹣ ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=
.
(1)求函數(shù)f(x)的定義域A;
(2)設(shè)B={x|﹣1<x<2},當(dāng)實數(shù)a、b∈(B∩RA)時,證明:
|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,底面
為矩形,
面
,
為
的中點。
(1)證明:
平面
;
(2)設(shè)
,
,三棱錐
的體積
,求A到平面PBC的距離。
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com