【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為
.第一次抽獎,若未中獎,則抽獎結束.若中獎,則通過拋一枚質地均勻的硬幣,決定是否繼續進行第二次抽獎,規定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續三次抽獎,每次中獎率均為
,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金
(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
科目:高中數學 來源: 題型:
【題目】已知圓
的圓心為
,圓內一條過點
的動弦
(與
軸不重合),過點
作
的平行線交
于點
.
(1)求出點
的軌跡方程;
(2)若過點
的直線
交
的軌跡方程于不同兩點
,
,
為坐標原點,且
,點
為橢圓上一點,求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角梯形PBCD中,
,A為PD的中點,如下左圖。將
沿AB折到
的位置,使
,點E在SD上,且
,如下圖。
(1)求證:
平面ABCD;
(2)求二面角E—AC—D的正切值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,右焦點為
,以原點
為圓心,橢圓
的短半軸長為半徑的圓與直線
相切.
![]()
(1)求橢圓
的方程;
(2)如圖,過定點
的直線
交橢圓
于
兩點,連接
并延長交
于
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數學中有許多形狀優美、寓意美好的曲線,曲線
就是其中之一(如圖),給出下列三個結論:
![]()
①曲線
恰好經過4個整點(即橫、縱坐標均為整數的點);
②曲線
上任意一點到原點的距離都不超過
.
③曲線
所圍成的“花形”區域的面積小于4.
其中,所有正確結論的序號是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設甲、乙兩地相距400千米,汽車從甲地勻速行駛到乙地,速度不得超過100千米/小時,已知該汽車每小時的運輸成本P(元)關于速度v(千米/小時)的函數關系是
.
(1)求全程運輸成本Q(元)關于速度v的函數關系式;
(2)為使全程運輸成本最少,汽車應以多大速度行駛?并求此時運輸成本的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
過點
,其焦點為
,且
.
(1)求拋物線
的方程;
(2)設
為
軸上異于原點的任意一點,過點
作不經過原點的兩條直線分別與拋物線
和圓
相切,切點分別為
,求證:
三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知極坐標系的極點為直角坐標系
的原點,極軸為
軸的正半軸,兩種坐標系中的長度單位相同,圓
的直角坐標方程為
,直線
的參數方程為
(
為參數),射線
的極坐標方程為
.
(1)求圓
和直線
的極坐標方程;
(2)已知射線
與圓
的交點為
,與直線
的交點為
,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率;先由計算器給出0到9之間取整數值的隨機數,指定0、1、2表示沒有擊中目標,3、4、5、6、7、8、9表示擊中目標,以4個隨機數為一組,代表射擊4次的結果,經隨機模擬產生了20組隨機數 :
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據以上數據估計該射擊運動員射擊4次至少擊中3次的概率為( )
A. 0.55B. 0.6C. 0.65D. 0.7
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com