【題目】如圖,拋物線y=ax2+bx+3交y軸于點A,交x軸于點B(-3,0)和點C(1,0),頂點為點M.
(1)求拋物線的解析式;
(2)如圖,點E為x軸上一動點,若△AME的周長最小,請求出點E的坐標;
(3)點F為直線AB上一個動點,點P為拋物線上一個動點,若△BFP為等腰直角三角形,請直接寫出點P的坐標.
![]()
【答案】(1)
;(2)E(-
,0);(3)點P的坐標為(2,-5)或(1,0).
【解析】
(1)設拋物線的解析式為:y=a(x+3)(x-1),然后將點A的坐標代入函數解析式即可求得此拋物線的解析式;
(2)作A關于x軸的對稱點A′(0,-3),連接MA′交x軸于E,此時△AME的周長最小,求出直線MA'解析式即可求得E的坐標;
(3)如圖2,先求直線AB的解析式為:y=x+3,根據解析式表示點F的坐標為(m,m+3),
分三種情況進行討論:
①當∠PBF=90°時,由F1P⊥x軸,得P(m,-m-3),把點P的坐標代入拋物線的解析式可得結論;
②當∠BF3P=90°時,如圖3,點P與C重合,
③當∠BPF4=90°時,如圖3,點P與C重合,
從而得結論.
(1)當x=0時,y=3,即A(0,3),
設拋物線的解析式為:y=a(x+3)(x-1),
把A(0,3)代入得:3=-3a,
a=-1,
∴y=-(x+3)(x-1)=-x2-2x+3,
即拋物線的解析式為:y=-x2-2x+3;
(2)y=-x2-2x+3=-(x+1)2+4,
∴M(-1,4),
如圖1,作點A(0,3)關于x軸的對稱點A'(0,-3),連接A'M交x軸于點E,則點E就是使得△AME的周長最小的點,
![]()
設直線A′M的解析式為:y=kx+b,
把A'(0,-3)和M(-1,4)代入得:
,
解得:![]()
∴直線A'M的解析式為:y=-7x-3,
當y=0時,-7x-3=0,
x=-
,
∴點E(-
,0),
(3)如圖2,易得直線AB的解析式為:y=x+3,
![]()
設點F的坐標為(m,m+3),
①當∠PBF=90°時,過點B作BP⊥AB,交拋物線于點P,此時以BP為直角邊的等腰直角三角形有兩個,即△BPF1和△BPF2,
∵OA=OB=3,
∴△AOB和△A'OB是等腰直角三角形,
∴∠F1BC=∠BF1P=45°,
∴F1P⊥x軸,
∴P(m,-m-3),
把點P的坐標代入拋物線的解析式y=-x2-2x+3中得:
-m-3=-m2-2m+3,
解得:m1=2,m2=-3(舍),
∴P(2,-5);
②當∠BF3P=90°時,如圖3,
![]()
∵∠F3BP=45°,且∠F3BO=45°,
∴點P與C重合,
故P(1,0),
③當∠BPF4=90°時,如圖3,
∵∠F4BP=45°,且∠F4BO=45°,
∴點P與C重合,
故P(1,0),
綜上所述,點P的坐標為(2,-5)或(1,0).
科目:初中數學 來源: 題型:
【題目】(問題提出)
如圖①,在
中,若
,
,求
邊上的中線
的取值范圍.
(1)(問題解決)
解決此問題可以用如下方法:延長
到點
使
,再連接
(或將
繞著點
逆時針旋轉
得到
),把
、
、
集中在
中,利用三角形三邊的關系即可判斷,由此得出中線
的取值范圍.
(2)(應用)
如圖②,在
中,
為
的中點,已知
,
,
,求
的長.
(3)(拓展)
如圖③,在
中,
,點
是邊
的中點,點
在邊
上,過點
作
交邊
于點
,連接
。已知
,
,求
的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,矩形
的頂點
在
軸上,頂點
在
軸上,
是
的中點,過點
的反比例函數圖象交
于點
,連接
,若
.
![]()
求過點
的反比例函數的解析式及
所在直線的函數解析式.
設直線
與
軸和
軸的交點分別為
,求
的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“書香校園”活動中,某校為了解學生家庭藏書情況,隨機抽取本校部分學生進行調查,并繪制成部分統計圖表如下:
類別 | 家庭藏書m本 | 學生人數 |
A | 0≤m≤25 | 20 |
B | 26≤m≤100 | a |
C | 101≤m≤200 | 50 |
D | m≥201 | 66 |
根據以上信息,解答下列問題:
(1)該調查的樣本容量為_____,a=_____;
(2)在扇形統計圖中,“A”對應扇形的圓心角為_____°;
(3)若該校有2000名學生,請估計全校學生中家庭藏書200本以上的人數.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2,點E是CD邊的中點,點F是邊BC上不與點B,C重合的一個動點,把∠C沿直線EF折疊,使點C落在點C′處.當△ADC′為等腰三角形時,FC的長為_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC交⊙O于點D,E是
的中點,AE與BC交于點F,∠C=2∠EAB.
(1)求證:AC是⊙O的切線;
(2)已知CD=4,CA=6,
①求CB的長;
②求DF的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,B(2m,0)、C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線y=ax2+bx+n(a≠0)過E、A′兩點.
(1)填空:∠AOB= °,用m表示點A′的坐標:A′ ;
(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且
時,△D′OE與△ABC是否相似?說明理由;
(3)若E與原點O重合,拋物線與射線OA的另一個交點為M,過M作MN垂直y軸,垂足為N:
①求a、b、m滿足的關系式;
②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為5,請你探究a的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在日常生活中我們經常會使用到訂書機,如圖MN是裝訂機的底座,AB是裝訂機的托板AB始終與底座平行,連接桿DE的D點固定,點E從A向B處滑動,壓柄BC繞著轉軸B旋轉.已知連接桿BC的長度為20cm,BD=
cm,壓柄與托板的長度相等.
(1)當托板與壓柄的夾角∠ABC=30°時,如圖①點E從A點滑動了2cm,求連接桿DE的長度.
(2)當壓柄BC從(1)中的位置旋轉到與底座垂直,如圖②.求這個過程中,點E滑動的距離.(結果保留根號)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線
與反比例函數
(
>0)的圖象分別交于點 A(
,4)和點B(8,
),與坐標軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)觀察圖象,當
時,直接寫出
的解集;
![]()
(3)若點P是
軸上一動點,當△COD與△ADP相似時,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com