【題目】△ABC中,D是BC的中點,點G在AD上(點G不與A重合),過點G的直線交AB于E,交射線AC于點F,設AE=xAB,AF=yAC(x,y≠0).
![]()
(1)如圖1,若△ABC為等邊三角形,點G與D重合,∠BDE=30,求證:△AEF∽△DEA;
(2)如圖2,若點G與D重合,求證:x+y=2xy;
(3)如圖3,若AG=nGD,x=
,y=
,直接寫出n的值.
【答案】(1)見解析;(2)見解析;(3)n=3
【解析】
(1)先根據等邊三角形的性質和中線的性質得到∠BAD=30°,再求得∠F=∠BAD=30°即可證明;
(2)先證明△DEB≌△DHC,得到CH=BE,再證明△FCH∽△FAE,最后運用相似三角形的性質即可證明;
(3)先確定點E是AB的中點,然后根據DE是△ABC的中位線,得出DE=AC,DE//AC可得△DGE∽△AGP,最后運用相似三角形的性質求解即可.
解:(1)∵△ABC為等邊三角形,
∴∠BAC=∠B=60°,AB=AC,
∵AD是△ABC的中線,
∴AD平分∠BAC,即∠BAD=
∠BAC=30°,
∵∠BDE=30°,
∴∠BED=90°,即EF⊥AB
∴∠F=90°-∠EAF=30°
∴∠F=∠BAD
∵∠AED=∠FEA=90°,
∴△AEF∽△DEA;
(2)如圖2,過C作CH//AB交EF于H,
∴∠B=∠DCH,∠BED=∠CHD,
∵AD是△ABC的中線
∴BD=CD,
∴△DEB≌△DHC(AAS),
∴CH=BE,
∵CH//AB,
∴△FCH∽△FAE,CF_CH,
∴![]()
∴![]()
∵
,![]()
∴
,
∴x+y=2xy;
![]()
(3)如圖3,連接DE
∵y=![]()
∴AF=
AC,即AC =
AF
同理:AE=
AB
∴點E是AB的中點。
∵AD是△ABC的中線,即點D是BC的中點,
∴![]()
∵DE//AC.
∴△DGE∽△AGP
∴
,即AG=3DG
∴n=3.
![]()
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB上的一點,△ADE和△BCE都是等邊三角形,點P、Q、M、N分別為AB、BC、CD、DA的中點,則四邊形MNPQ是( )
![]()
A.等腰梯形B.矩形C.菱形D.正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面上,邊長為
的正方形和短邊長為
的矩形幾何中心重合,如圖①,當正方形和矩形都水平放置時,容易求出重疊面積
.
甲、乙、丙三位同學分別給出了兩個圖形不同的重疊方式;
甲:矩形繞著幾何中心旋轉,從圖②到圖③的過程中,重疊面積
大小不變.
乙:如圖④,矩形繞著幾何中心繼續旋轉,矩形的兩條長邊與正方形的對角線平行時,此時的重疊面積大于圖③的重疊面積.
丙:如圖⑤,將圖④中的矩形向左上方平移,使矩形的一條長邊恰好經過正方形的對角線,此時的重疊面積是
個圖形中最小的.
下列說法正確的是( )
A.甲、乙、丙都對B.只有乙對C.只有甲不對D.甲、乙、丙都不對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系
中,拋物線
與
軸交于A,B兩點(點A在點B左側)
(1)求拋物線的頂點坐標(用含
的代數式表示);
(2)求線段AB的長;
(3)拋物線與
軸交于點C(點C不與原點
重合),若
的面積始終小于
的面積,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)解下列方程.
①
根為______;
②
根為______;
③
根為______;
(2)根據這類方程特征,寫出第n個方程和它的根;
(3)請利用(2)的結論,求關于x的方程
(n為正整數)的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,∠D=2∠A.
(1)求證:CD是⊙O的切線;
(2)求證:DE=DC;
(3)若OD=5,CD=3,求AC的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,將△ABC繞點A逆時針旋轉60°,得到△ADE,連接BE,則∠BED的度數為_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數解析式為y=mx2﹣2mx+m﹣
,二次函數與x軸交于A、B兩點(B在A右側),與y軸交于C點,二次函數頂點為M.已知∠OMB=90°.
①求頂點坐標.
②求二次函數解析式.
③N為線段BM中點,在二次函數的對稱軸上是否存在一點P,使得∠PON=60°,若存在求出點P坐標,若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】郴州市正在創建“全國文明城市”,某校擬舉辦“創文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.
(1)A、B兩種獎品每件各多少元?
(2)現要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com