【題目】以x為自變量的二次函數y=﹣x2+(2m+2)x﹣(m2+4m﹣3)中,m為不小于0的整數,它的圖象與x軸的交點A在原點左邊,交點B在原點右邊.
(1)求這個二次函數的解析式;
(2)設點C為此二次函數圖象上的一點,且滿足△ABC的面積等于10,請求出點C的坐標.
【答案】
(1)解:∵圖象與x軸的交點A在原點左邊,交點B在原點右邊,
∴△=(2m+2)2﹣4×(﹣1)×[﹣(m2+4m﹣3)]>0,
解得:m<2,
∵m為不小于0的整,
∴m=0或1.
當m=0時,y=﹣x2+2x+3,其中A(﹣1,0),B(3,0);
當m=1時,y=﹣x2+4x﹣2,不合題意;
∴二次函數的解析式為:y=﹣x2+2x+3
(2)解:∵△ABC的面積等于10,|AB|=4,
∴
|AB|h=10,
∴h=5,
∴C點的縱坐標為5或﹣5,
當C點的縱坐標為5時,﹣x2+2x+3=5,即﹣x2+2x﹣2=0,△=4﹣4×(﹣1)×(﹣2)<0,不合題意,舍去;
當C點的縱坐標為﹣5時,﹣x2+2x+3=﹣5,即﹣x2+2x+8=0,
解得:x=4或﹣2,
所以點C的坐標為:(4,﹣5)或(﹣2,﹣5)
【解析】(1)由二次函數y=﹣x2+(2m+2)x﹣(m2+4m﹣3)中,m為不小于0的整數,它的圖象與x軸的交點A在原點左邊,交點B在原點右邊,可確定m的值,可得二次函數的解析式;(2)由△ABC的面積等于10,|AB|=4,求出點C的縱坐標,再代入解析式可得點C的橫坐標,即得點C的坐標.
【考點精析】關于本題考查的拋物線與坐標軸的交點,需要了解一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】(方案設計題)如圖是人民公園中的荷花池,現要測量荷花池岸邊樹A與樹B間的距離.如果直接測量比較困難,請你根據所學知識,以卷尺和測角儀為測量工具,設計兩種不同的測量方案并畫出圖形.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料: 小明在學習二次根式后,發現一些含根號的式子可以寫成另一個式子的平方,如:
,善于思考的小明進行了以下探索:
設
(其中
均為整數),則有
.
∴
.這樣小明就找到了一種把部分
的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
當
均為正整數時,若
,用含m、n的式子分別表示
,得
= ,
= ;
(2)利用所探索的結論,找一組正整數
,填空: + =( +
)2;
(3)若
,且
均為正整數,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=2x﹣3與y軸交于點A,點A與點B關于x軸對稱,過點B作y軸的垂線l,直線l與直線y=2x﹣3交于點C.
(1)求點C的坐標;
(2)如果拋物線y=nx2﹣4nx+5n(n>0)與線段BC有唯一公共點,求n的取值范圍. ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2+2x+a﹣2=0.
(1)若該方程有兩個不相等的實數根,求實數a的取值范圍;
(2)當該方程的一個根為1時,求a的值及方程的另一根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發,分別乘坐“徐州號”高鐵A與“復興號”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于概率,下列說法正確的是( )
A.莒縣“明天降雨的概率是75%”表明明天莒縣會有75%的時間會下雨
B.隨機拋擲一枚質地均勻的硬幣,落地后一定反面向上
C.在一次抽獎活動中,中獎的概率是1%,則抽獎100次就一定會中獎
D.同時拋擲兩枚質地均勻硬幣,“一枚硬幣正面向上,一枚硬幣反面向上”的概率是 ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某閉合電路中,其兩端電壓恒定,電流I(A)與電阻R(Ω)圖象如圖所示,回答問題: ![]()
(1)寫出電流I與電阻R之間的函數解析式.
(2)如果一個用電器的電阻為5Ω,其允許通過的最大電流是1A,那么這個用電器接在這個閉合電路中,會不會燒毀?說明理由.
(3)若允許的電流不超過4A時,那么電阻R的取值應該控制在什么范圍?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,點O是等邊三角形ABC內一點,∠AOB=110°,∠BOC=α, 以OC為邊作等邊三角形OCD,連接AD.
![]()
(1)當α=150°時,試判斷△AOD的形狀,并說明理由;
(2)探究:當a為多少度時,△AOD是等腰三角形?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com