【題目】如圖,在△ABC 中,D、E、F 分別為邊 AB、AC、BC 上的點,連接 DE、EF.若 DE∥BC,EF∥AB,則圖中共有________對相似三角形.
![]()
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=8,AD=10,E是CD邊上一點,連接AE,將矩形ABCD沿AE折疊,頂點D恰好落在BC邊上點F處,延長AE交BC的延長線于點G.
(1)求線段CE的長;
(2)如圖2,M,N分別是線段AG,DG上的動點(與端點不重合),且∠DMN=∠DAM,設AM=x,DN=y.
①寫出y關于x的函數解析式,并求出y的最小值;
②是否存在這樣的點M,使△DMN是等腰三角形?若存在,請求出x的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,點E是BC的中點,以C為圓心、CE為半徑作弧,交CD于點F,連接AE、AF.若AB=2,∠B=60°,則陰影部分的面積為( )
![]()
A.![]()
B.![]()
![]()
C.2
–πD.2![]()
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=
x2+bx+c與直線y=
x+3交于A,B兩點,交x軸于C、D兩點,連接AC、BC,已知A(0,3),C(﹣3,0).
(1)求拋物線的解析式;
(2)在拋物線對稱軸l上找一點M,使|MB﹣MD|的值最大,并求出這個最大值;
(3)點P為y軸右側拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ABC相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電子廠商投產一種新型電子產品,每件制造成本為16元,試銷過程中發現,每月銷售量y(萬件)與銷售單價x(元)之間的關系可以近似地看作一次函數y=﹣2x+100.(利潤=售價﹣制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數關系式;
(2)如果廠商每月的制造成本不超過480萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:拋物線 y=ax2+bx+1 經過 A(1,0)、B(-1,3)兩點.
![]()
(1)求 a,b 的值;
(2)以線段 AB 為邊作正方形 ABB′A′,能否將已知拋物線平移,使其經過 A′、B′兩點?若能,求出平移后經過 A′、B′兩點的拋物線的解析式;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的頂點D、G分別在AC、BC上,邊EF在AB上.
(1)求證:△AED∽△DCG;
(2)若矩形DEFG的面積為4,求AE的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市預測某飲料有發展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若一次函數ymxn與反比例函數y
同時經過點P(x,y)則稱二次函數ymx2nxk為一次函數與反比例函數的“共享函數”,稱點P為共享點.
(1)判斷y2x1與y
是否存在“共享函數”,如果存在,請求出“共享點”.如果不存在,請說明理由;
(2)已知:整數m,n,t滿足條件t<n<8m,并且一次函數y=(1+n)x+2m+2與反比例函數y
存在“共享函數”y=(m+t)x2+(10mt)x2020,求m的值.
(3)若一次函數yxm和反比例函數y
在自變量x的值滿足mxm6的情況下,其“共享函數”的最小值為3,求其“共享函數”的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com