【題目】如圖,正方形ABCD中,E為CD上一點,F為BC延長線上一點,CE=CF. ![]()
(1)△DCF可以看做是△BCE繞點C旋轉某個角度得到的嗎?說明理由.
(2)若∠CEB=60°,求∠EFD的度數.
【答案】
(1)證明:∵四邊形ABCD是正方形,
∴DC=BC,∠DCB=∠FCE,
∵CE=CF,
∴△DCF≌△BCE,
則△DCF可以看作是△BCE繞點C順時針旋轉90°得到
(2)解:∵△BCE≌△DCF,
∴∠DFC=∠BEC=60°,
∵CE=CF,
∴∠CFE=45°,
∴∠EFD=15°
【解析】(1)根據正方形的性質及全等三角形的判定方法即可證明△BCE≌△DCF,據此即可解答;(2)由兩個三角形全等的性質得出∠CFD的度數,再用等腰三角形的性質求∠EFD的度數.
【考點精析】利用正方形的性質和旋轉的性質對題目進行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定△ABC是等腰三角形(用序號寫出一種情形):_______.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F.
![]()
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O,有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結論中正確的是 .
(1)EF=
OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=
OA;(4)在旋轉過程中,當△BEF與△COF的面積之和最大時,AE=
.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將Rt△ABC繞點A按順時針方向旋轉一定角度得到Rt△ADE,點B的對應點D恰好落在BC邊上,若DE=2,∠B=60°,則CD的長為( ) ![]()
A.0.5
B.1.5
C.![]()
D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:(1)
(2)![]()
(3)
(4)(3x+y)(-y+3x)
(5)2a(a-2a3)-(-3a2)2; (6)(x-3)(x+2)-(x+1)2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 , …按如圖的方式放置.點A1 , A2 , A3 , …和點C1 , C2 , C3 , …分別在直線y=x+1和x軸上,則點B6的坐標是 . ![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com