【題目】如圖,二次函數y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關于拋物線的對稱軸對稱,已知一次函數y=kx+b的圖象經過該二次函數圖象上的點A(﹣1,0)及點B. ![]()
(1)求二次函數與一次函數的解析式;
(2)根據圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
【答案】
(1)解:∵拋物線y=(x+2)2+m經過點A(﹣1,0),
∴0=1+m,
∴m=﹣1,
∴拋物線解析式為y=(x+2)2﹣1=x2+4x+3,
∴點C坐標(0,3),
∵對稱軸x=﹣2,B、C關于對稱軸對稱,
∴點B坐標(﹣4,3),
∵y=kx+b經過點A、B,
∴
,解得
,
∴一次函數解析式為y=﹣x﹣1
(2)解:由圖象可知,寫出滿足(x+2)2+m≥kx+b的x的取值范圍為x≤﹣4或x≥﹣1.
![]()
【解析】(1)先利用待定系數法先求出m,再求出點B坐標,利用方程組求出一次函數解析式.(2)根據二次函數的圖象在一次函數的圖象上面即可寫出自變量x的取值范圍.
【考點精析】解答此題的關鍵在于理解確定一次函數的表達式的相關知識,掌握確定一個一次函數,需要確定一次函數定義式y=kx+b(k不等于0)中的常數k和b.解這類問題的一般方法是待定系數法.
科目:初中數學 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若a=0.32,b=﹣3﹣2,c=
,d=
,則它們的大小關系是( )
A. a<b<c<d B. b<a<d<c C. a<d<c<b D. c<a<d<b
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,點A、B分別是∠NOP、∠MOP平分線上的點,AB⊥OP于點E,BC⊥MN于點C,AD⊥MN于點D,下列結論錯誤的是( )
![]()
A. AD+BC=AB B. 與∠CBO互余的角有兩個
C. ∠AOB=90° D. 點O是CD的中點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=
,其中
為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、∠2、∠3、∠4的外角的角度和為220°,則∠BOD的度數是( )
![]()
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).![]()
(1)請直接寫出與點B關于坐標原點O的對稱點B1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°.畫出對應的△A′B′C′圖形,直接寫出點A的對應點A′的坐標;
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將長方形ABCD對折,得折痕PQ,展開后再沿MN翻折,使點C恰好落在折痕PQ上的點C′處,點D落在D′處,其中M是BC的中點且MN與折痕PQ交于F.連接AC′,BC′,則圖中共有等腰三角形的個數是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com