精品一区二区免费在线观看_国产精品久久久久久av福利软件_97成人精品区在线播放_国内成人精品一区

設f(x)=lg.如果當x∈有意義.求 實數a的取值范圍. 查看更多

 

題目列表(包括答案和解析)

設f(x)=lg,如果當x∈(-∞,1)時f(x)有意義,求實數a的取值范圍.

查看答案和解析>>

設f(x)=lg,其中a∈R,如果當x∈(-∞,1]時,f(x)有意義,求a的取值范圍.

查看答案和解析>>

設f(x)=lg,其中a∈R,如果當x∈(-∞,1)時,f(x)有意義,求a的取值范圍.

查看答案和解析>>

設f(x)=lg,其中a∈R,如果當x∈(-∞,1]時,f(x)有意義,求a的取值范圍

查看答案和解析>>

設函數f(x)=lg,其中a∈R,如果當x∈(-∞,1]時,函數有意義,求a的取值范圍.

查看答案和解析>>

1.不改變f(x)值域,即不能縮小原函數定義域。選項B,C,D均縮小了的定義域,故選A。

2.先作出f(x,y)=0關于軸對稱的函數的圖象,即為函數f(-x,y)=0的圖象,又

f(2-x,y)=0即為,即由f(-x,y)=0向右平移2個單位。故選C。

3.命題p為真時,即真數部分能夠取到大于零的所有實數,故二次函數的判別式,從而;命題q為真時,。

    若p或q為真命題,p且q為假命題,故p和q中只有一個是真命題,一個是假命題。

    若p為真,q為假時,無解;若p為假,q為真時,結果為1<a<2,故選C.

4.圖像法解方程,也可代入各區間的一個數(特值法或代入法),選C;

5.函數f(x)的對稱軸為2,結合其單調性,選A;

6.從反面考慮,注意應用特例,選B;

7.設tan=x (x>0),則+=,解出x=2,再用萬能公式,選A;

8.利用是關于n的一次函數,設S=S=m,=x,則(,p)、(,q)、

(x,p+q)在同一直線上,由兩點斜率相等解得x=0,則答案:0;

9.設cosx=t,t∈[-1,1],則a=t-t-1∈[-,1],所以答案:[-,1];

10.設高h,由體積解出h=2,答案:24;

11.設長x,則寬,造價y=4×120+4x×80+×80≥1760,答案:1760。

12.運用條件知:=2,且

==16

13.依題意可知,從而可知,所以有

,又為正整數,取,則

,所以,從而,所以,又,所以,因此有最小值為。

下面可證時,,從而,所以, 又,所以,所以,綜上可得:的最小值為11。

14.分析:這是有關函數定義域、值域的問題,題目是逆向給出的,解好本題要運用復合函數,把f(x)分解為u=ax+2x+1和y=lgu 并結合其圖象性質求解.

切實數x恒成立.   a=0或a<0不合題意,

解得a>1.

當a<0時不合題意;    a=0時,u=2x+1,u能取遍一切正實數;

a>0時,其判別式Δ=22-4×a×1≥0,解得0<a≤1.

所以當0≤a≤1時f(x)的值域是R

 

15.分析:此問題由于常見的思維定勢,易把它看成關于x的不等式討論。然而,若變換一個角度以m為變量,即關于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的問題。對此的研究,設f(m)=(x-1)m-(2x-1),則問題轉化為求一次函數(或常數函數)f(m)的值在[-2,2]內恒為負值時參數x應該滿足的條件。

解:問題可變成關于m的一次不等式:(x-1)m-(2x-1)<0在[-2,2] 恒成立,設f(m)=(x-1)m-(2x-1),  則

解得x∈(,)

說明 本題的關鍵是變換角度,以參數m作為自變量而構造函數式,不等式問題變成函數在閉區間上的值域問題。本題有別于關于x的不等式2x-1>m(x-1)的解集是[-2,2]時求m的值、關于x的不等式2x-1>m(x-1)在[-2,2]上恒成立時求m的范圍。

一般地,在一個含有多個變量的數學問題中,確定合適的變量和參數,從而揭示函數關系,使問題更明朗化;蛘吆袇档暮瘮抵,將函數自變量作為參數,而參數作為函數,更具有靈活性,從而巧妙地解決有關問題。

 

16.分析: ①問利用公式a與S建立不等式,容易求解d的范圍;②問利用S是n的二次函數,將S中哪一個值最大,變成求二次函數中n為何值時S取最大值的函數最值問題。

解:① 由a=a+2d=12,得到a=12-2d,所以

S=12a+66d=12(12-2d)+66d=144+42d>0,

S=13a+78d=13(12-2d)+78d=156+52d<0。

 解得:-<d<-3。

② S=na+n(n1-1)d=n(12-2d)+n(n-1)d

=[n-(5-)]-[(5-)]

因為d<0,故[n-(5-)]最小時,S最大。由-<d<-3得6<(5-)<6.5,故正整數n=6時[n-(5-)]最小,所以S最大。

說明: 數列的通項公式及前n項和公式實質上是定義在自然數集上的函數,因此可利用函數思想來分析或用函數方法來解決數列問題。也可以利用方程的思想,設出未知的量,建立等式關系即方程,將問題進行算式化,從而簡潔明快。由次可見,利用函數與方程的思想來解決問題,要求靈活地運用、巧妙的結合,發展了學生思維品質的深刻性、獨創性。

本題的另一種思路是尋求a>0、a<0 ,即:由d<0知道a>a>…>a,由S=13a<0得a<0,由S=6(a+a)>0得a>0。所以,在S、S、…、S中,S的值最大。

 

17.分析:異面直線PB和AC的距離可看成求直線PB上任意一點到AC的距離的最小值,從而設定變量,建立目標函數而求函數最小值。

  P

         M
A        H       B
     D     C

解:在PB上任取一點M,作MD⊥AC于D,MH⊥AB于H,

設MH=x,則MH⊥平面ABC,AC⊥HD 。

∴MD=x+[(2r-x)sinθ]=(sin+1)x-4rsinθx+4rsinθ=(sinθ+1)[x-]+

即當x=時,MD取最小值為兩異面直線的距離。

說明:本題巧在將立體幾何中“異面直線的距離”變成“求異面直線上兩點之間距離的最小值”,并設立合適的變量將問題變成代數中的“函數問題”。一般地,對于求最大值、最小值的實際問題,先將文字說明轉化成數學語言后,再建立數學模型和函數關系式,然后利用函數性質、重要不等式和有關知識進行解答。比如再現性題組第8題就是典型的例子。

 

18.分析:已知了一個積式,考慮能否由其它已知得到一個和式,再用方程思想求解。

解: 由A、B、C成等差數列,可得B=60°;

由△ABC中tanA+tanB+tanC=tanA?tanB?tanC,得

tanA+tanC=tanB(tanA?tanC-1)= (1+)

設tanA、tanC是方程x-(+3)x+2+=0的兩根,解得x=1,x=2+

設A<C,則tanA=1,tanC=2+,   ∴A=,C=

由此容易得到a=8,b=4,c=4+4。

說明:本題的解答關鍵是利用“△ABC中tanA+tanB+tanC=tanA?tanB?tanC”這一條性質得到tanA+tanC,從而設立方程求出tanA和tanC的值,使問題得到解決。

19.分析:當x∈(-∞,1]時f(x)=lg有意義的函數問題,轉化為1+2+4a>0在x∈(-∞,1]上恒成立的不等式問題。

解:由題設可知,不等式1+2+4a>0在x∈(-∞,1]上恒成立,

即:()+()+a>0在x∈(-∞,1]上恒成立。

設t=(),  則t≥,   又設g(t)=t+t+a,其對稱軸為t=-

∴ t+t+a=0在[,+∞)上無實根,  即 g()=()++a>0,得a>-

所以a的取值范圍是a>-。

說明:對于不等式恒成立,引入新的參數化簡了不等式后,構造二次函數利用函數的圖像和單調性進行解決問題,其中也聯系到了方程無解,體現了方程思想和函數思想。一般地,我們在解題中要抓住二次函數及圖像、二次不等式、二次方程三者之間的緊密聯系,將問題進行相互轉化。

在解決不等式()+()+a>0在x∈(-∞,1]上恒成立的問題時,也可使用“分離參數法”: 設t=(),  t≥,則有a=-t-t∈(-∞,-],所以a的取值范圍是a>-。其中最后得到a的范圍,是利用了二次函數在某區間上值域的研究,也可屬應用“函數思想”。

 

20.解:f(x)=cosqsinx-(sinxcosq-cosxsinq)+(tanq-2)sinx-sinq

       =sinqcosx+(tanq-2)sinx-sinq

因為f(x)是偶函數,

所以對任意xÎR,都有f(-x)=f(x),

即sinqcos(-x)+(tanq-2)sin(-x)-sinq=sinqcosx+(tanq-2)sinx-sinq,

即(tanq-2)sinx=0,

所以tanq=2

解得或

此時,f(x)=sinq(cosx-1).

當sinq=時,f(x)=(cosx-1)最大值為0,不合題意最小值為0,舍去;

當sinq=時,f(x)=(cosx-1)最小值為0,

當cosx=-1時,f(x)有最大值為,

自變量x的集合為{x|x=2kp+p,kÎZ}.

 

21.解:(1);.,
若上是增函數,則恒成立,即
若上是減函數,則恒成立,這樣的不存在.
綜上可得:.

(2)(證法一)設,由得,于是有,(1)-(2)得:,化簡可得
,,,故,即有.

(證法二)假設,不妨設,由(1)可知在

上單調遞增,故,

這與已知矛盾,故原假設不成立,即有.

 


同步練習冊答案
精品一区二区免费在线观看_国产精品久久久久久av福利软件_97成人精品区在线播放_国内成人精品一区
久久无码av三级| 一区二区三区久久| 欧美精品成人一区二区三区四区| 久久精品国产77777蜜臀| 亚洲三级在线看| 久久久噜噜噜久久中文字幕色伊伊| 91片在线免费观看| 国产精品一卡二卡在线观看| 香蕉久久夜色精品国产使用方法| 国产日本欧美一区二区| 亚洲欧美日韩国产一区二区三区| 久久久久久99久久久精品网站| 欧美日韩精品欧美日韩精品| 97精品超碰一区二区三区| 国产伦精品一区二区三区在线观看| 亚洲一区二区三区四区在线| 国产精品―色哟哟| 久久天堂av综合合色蜜桃网| 欧美一区二区三区免费| 欧美日韩激情一区二区| 日本高清无吗v一区| 在线观看亚洲成人| 欧美在线视频全部完| 日本精品免费观看高清观看| 99久久er热在这里只有精品15| 丁香六月综合激情| 成人综合婷婷国产精品久久蜜臀| 国产高清亚洲一区| 国产精品1024| 成人黄色国产精品网站大全在线免费观看| 国产麻豆日韩欧美久久| 久久99热国产| 亚洲综合另类小说| 亚洲va欧美va天堂v国产综合| 亚洲免费毛片网站| 亚洲超碰97人人做人人爱| 91小视频在线免费看| 99re视频精品| 欧美日韩在线亚洲一区蜜芽| 7878成人国产在线观看| 日韩区在线观看| 国产欧美一区二区精品性色超碰| 国产网站一区二区三区| 中文字幕字幕中文在线中不卡视频| 中文字幕一区在线观看| 香蕉影视欧美成人| 久久66热偷产精品| 99精品久久久久久| 欧美三级在线视频| 精品久久久影院| 中文字幕一区在线观看| 日韩黄色免费电影| 国产成人在线视频网址| 91黄色激情网站| 精品国产乱码久久久久久免费| 中文字幕成人av| 香蕉乱码成人久久天堂爱免费| 精品亚洲aⅴ乱码一区二区三区| 国产成人亚洲综合a∨婷婷| 欧美亚洲一区二区在线| 3atv一区二区三区| 91福利社在线观看| 欧美tk—视频vk| 一级做a爱片久久| 欧美日韩国产bt| 久久综合色综合88| 亚洲网友自拍偷拍| 国产高清精品网站| 欧美日韩高清影院| ㊣最新国产の精品bt伙计久久| 蜜桃久久久久久久| 在线免费观看成人短视频| 中文字幕精品综合| 亚洲国产视频a| 偷拍亚洲欧洲综合| 国产剧情一区在线| 精品久久久影院| 男人的天堂亚洲一区| 欧美体内she精视频| 国产精品久久久久婷婷| 精品亚洲porn| 精品成人一区二区三区四区| 日日夜夜精品免费视频| 欧美在线综合视频| 怡红院av一区二区三区| 91蝌蚪porny成人天涯| 中文字幕在线不卡视频| 懂色av一区二区在线播放| 久久久久久久综合色一本| 国产中文字幕精品| 久久久天堂av| 国产成人免费高清| 中文字幕电影一区| 91一区在线观看| 一片黄亚洲嫩模| 777a∨成人精品桃花网| 日韩 欧美一区二区三区| 8v天堂国产在线一区二区| 奇米综合一区二区三区精品视频| 日韩一区二区中文字幕| 精品一区二区在线观看| 久久综合九色综合欧美98| 国产精品一区在线观看乱码| 中文字幕欧美国产| 在线欧美日韩国产| 欧美在线看片a免费观看| 欧美在线免费观看视频| 日本不卡在线视频| 国产日产亚洲精品系列| 99精品视频一区| 日韩av一区二区三区四区| 久久久久亚洲蜜桃| 欧洲亚洲国产日韩| 久久国产精品色婷婷| 中文字幕欧美激情| 欧美日韩久久一区二区| 国产一区二区三区四区五区入口| 中文字幕国产一区二区| 欧美日韩一区视频| 视频一区二区中文字幕| 欧美日韩视频在线第一区| 国产自产v一区二区三区c| 成人欧美一区二区三区白人| 日韩午夜av一区| 91免费看片在线观看| 精品一区二区在线播放| 亚洲黄一区二区三区| 337p粉嫩大胆噜噜噜噜噜91av| 91啪在线观看| 国产精品一二二区| 爽爽淫人综合网网站| 中文字幕在线观看不卡视频| 日韩欧美中文字幕一区| 色94色欧美sute亚洲线路一ni| 久久精品99久久久| 91香蕉国产在线观看软件| 日韩国产精品久久久久久亚洲| 国产精品三级av在线播放| 日韩三级伦理片妻子的秘密按摩| 色偷偷88欧美精品久久久| 国产成人免费视频一区| 九九在线精品视频| 日韩精品午夜视频| 亚洲成av人片一区二区| 亚洲图片激情小说| 国产精品不卡视频| 欧美激情一区在线| 国产免费成人在线视频| 亚洲精品一区二区精华| 欧美va亚洲va国产综合| 欧美一区二区成人| 欧美变态tickling挠脚心| 欧美日韩三级视频| 91精品欧美久久久久久动漫| 91精品91久久久中77777| 一本色道亚洲精品aⅴ| 97精品国产露脸对白| 91女厕偷拍女厕偷拍高清| 94-欧美-setu| 色偷偷一区二区三区| 欧美中文一区二区三区| 欧美日韩中文另类| 欧美一区二区三区在线看| 日韩一区二区精品| 精品国产乱码久久久久久久 | 精品999在线播放| 国产午夜亚洲精品理论片色戒| 欧美一区二区在线播放| 中文字幕制服丝袜成人av| 亚洲欧美电影一区二区| 亚洲欧洲综合另类| 亚洲成人av免费| 经典三级视频一区| 成人夜色视频网站在线观看| 色综合久久88色综合天天6| 欧美日韩亚洲综合在线 欧美亚洲特黄一级 | 91麻豆精品在线观看| 在线观看91精品国产入口| 在线不卡免费欧美| 国产亚洲精品bt天堂精选| 欧美国产丝袜视频| 亚洲一区二区三区激情| 美腿丝袜亚洲综合| 波多野结衣在线一区| 欧美精品tushy高清| 国产欧美综合在线观看第十页| 亚洲欧美偷拍卡通变态| 美女网站视频久久| 色婷婷国产精品久久包臀| 精品久久久久久久人人人人传媒 | 亚洲一区二区影院| 国产成人三级在线观看| 在线播放国产精品二区一二区四区 | 欧美精品黑人性xxxx| 国产性做久久久久久| 日本不卡一区二区三区| 色综合咪咪久久| 国产欧美一区二区精品秋霞影院 | 99热在这里有精品免费| 精品视频在线免费观看|