題目列表(包括答案和解析)
|
| 1 |
| 4 |
|
| x2 |
| 4 |
|
| π |
| 2 |
|
| x2 |
| 4 |
|
| π |
| 2 |
本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分,如果多做,則按所做的前兩題計分,做答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中。
(1)(本小題滿分7分)選修4-2:矩陣與變換
設矩陣
(其中a>0,b>0).
(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C’:
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為
.
(I)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
),判斷點P與直線l的位置關系;
(II)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設不等式
的解集為M.
(I)求集合M;
(II)若a,b∈M,試比較ab+1與a+b的大。
一、選擇題
1~4 BBCA 5~8 ADCD
二、填空題
9、
10、
=
11、
12. 42
; 
13. 2或
14.
15. 
三、解答題
16(本小題滿分12分)
1)
………………4分
2)當
單調遞減,故所求區間為
………………8分
(3)
時
………………12分
17(本題滿分14分)
解:(Ⅰ)由函數
的圖象關于原點對稱,得
,………1分
∴
,∴
. ………2分
∴
,∴
. ……………3分
∴
,即
. ………………5分
∴
. ……………………………6分
(Ⅱ)由(Ⅰ)知
,∴
.
由
,∴
. …………………8分








0
+
0


ㄋ
極小
ㄊ
極大
ㄋ
∴
. …………12分
18
證明:(I)在正
中,
是
的中點,所以
.
又
,
,
,所以
.
而
,所以
.所以由
,有
.
(II)取正
的底邊
的中點
,連接
,則
.
又
,所以
.
如圖,以點
為坐標原點,
為
軸,
為
軸,
建立空間直角坐標系.設
,則有
,
,
,
,
,
,
.再設
是面
的法向量,則有
,即
,可設
.
又
是面
的法向量,因此
,
所以
,即平面PAB與平面PDC所成二面角為
.
(Ⅲ)由(II)知
,設
與面
所成角為
,則
所以
與面
所成角的正弦值為
.
19(本題滿分14分)

20解:(I)建立圖示的坐標系,設橢圓方程為
依題意,


橢圓方程為
………………………………2分
F(-1,0)將x=-1代入橢圓方程得
∴當彗星位于太陽正上方時,二者在圖中的距離為1.5┩.……………………6分
(Ⅱ)由(I)知,A1(-2,0),A2(2,0),