題目列表(包括答案和解析)
對任意實數
,定義運算
,其中
為常數,等號右邊的運算是通常意義的加、乘運算.現已知
,且有一個非零實數
,使得對任意實數
,都有
,則
( )
A.2 B. 3 C.4 D.5
| A.2 | B.3 | C.4 | D.5 |
對任意實數x、y,定義運算
=ax+by+cxy,其中a、b、c為常數,等號右邊的運算是通常意義的加、乘運算.現已知1*2=3,2*3=4,且有一個非零實數m,使得對任意實數x,都有
=x,則m=___________.
一、選擇題
1~4 BBCA 5~8 ADCD
二、填空題
9、
10、
=
11、
12. 42
; 
13. 2或
14.
15. 
三、解答題
16(本小題滿分12分)
1)
………………4分
2)當
單調遞減,故所求區間為
………………8分
(3)
時
………………12分
17(本題滿分14分)
解:(Ⅰ)由函數
的圖象關于原點對稱,得
,………1分
∴
,∴
. ………2分
∴
,∴
. ……………3分
∴
,即
. ………………5分
∴
. ……………………………6分
(Ⅱ)由(Ⅰ)知
,∴
.
由
,∴
. …………………8分








0
+
0


ㄋ
極小
ㄊ
極大
ㄋ
∴
. …………12分
18
證明:(I)在正
中,
是
的中點,所以
.
又
,
,
,所以
.
而
,所以
.所以由
,有
.
(II)取正
的底邊
的中點
,連接
,則
.
又
,所以
.
如圖,以點
為坐標原點,
為
軸,
為
軸,
建立空間直角坐標系.設
,則有
,
,
,
,
,
,
.再設
是面
的法向量,則有
,即
,可設
.
又
是面
的法向量,因此
,
所以
,即平面PAB與平面PDC所成二面角為
.
(Ⅲ)由(II)知
,設
與面
所成角為
,則
所以
與面
所成角的正弦值為
.
19(本題滿分14分)

20解:(I)建立圖示的坐標系,設橢圓方程為
依題意,


橢圓方程為
………………………………2分
F(-1,0)將x=-1代入橢圓方程得
∴當彗星位于太陽正上方時,二者在圖中的距離為1.5┩.……………………6分
(Ⅱ)由(I)知,A1(-2,0),A2(2,0),