題目列表(包括答案和解析)
已知曲線C:
(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當
解得
,所以m的取值范圍是![]()
(2)當m=4時,曲線C的方程為
,點A,B的坐標分別為
,
由
,得![]()
因為直線與曲線C交于不同的兩點,所以![]()
即![]()
設點M,N的坐標分別為
,則![]()
![]()
直線BM的方程為
,點G的坐標為![]()
因為直線AN和直線AG的斜率分別為![]()
所以
![]()
![]()
即
,故A,G,N三點共線。
已知函數
。
(1)求函數的最小正周期和最大值;
(2)求函數的增區間;
(3)函數的圖象可以由函數
的圖象經過怎樣的變換得到?
【解析】本試題考查了三角函數的圖像與性質的運用。第一問中,利用
可知函數的周期為
,最大值為
。
第二問中,函數
的單調區間與函數
的單調區間相同。故當
,解得x的范圍即為所求的區間。
第三問中,利用圖像將
的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
解:(1)函數
的最小正周期為
,最大值為
。
(2)函數
的單調區間與函數
的單調區間相同。
即![]()
所求的增區間為
,![]()
即![]()
所求的減區間為
,
。
(3)將
的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
已知
中,
,
.設
,記
.
(1) 求
的解析式及定義域;
(2)設
,是否存在實數
,使函數
的值域為
?若存在,求出
的值;若不存在,請說明理由.
【解析】第一問利用(1)如圖,在
中,由
,,
可得
,
又AC=2,故由正弦定理得
(2)中
由
可得![]()
![]()
.顯然,
,則
1
當m>0的值域為![]()
m+1=3/2,n=1/2
2
當m<0,不滿足
的值域為
;
因而存在實數m=1/2
的值域為
.
在
中,已知
,面積
,
(1)求
的三邊的長;
(2)設
是
(含邊界)內的一點,
到三邊
的距離分別是![]()
①寫出
所滿足的等量關系;
②利用線性規劃相關知識求出
的取值范圍.
【解析】第一問中利用設
中角
所對邊分別為![]()
由
得![]()
![]()
又由
得
即
![]()
又由
得
即
![]()
又
又
得![]()
即
的三邊長![]()
![]()
第二問中,①
得
![]()
故![]()
②![]()
令
依題意有![]()
作圖,然后結合區域得到最值。
![]()
已知向量
=(
),
=(
,![]()
),其中(
).函數
,其圖象的一條對稱軸為
.
(I)求函數
的表達式及單調遞增區間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若
=1,b=l,S△ABC=
,求a的值.
【解析】第一問利用向量的數量積公式表示出![]()
,然后利用
得到
,從而得打解析式。第二問中,利用第一問的結論,表示出A,結合正弦面積公式和余弦定理求解a的值。
解:因為
![]()
由余弦定理得
,……11分故![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com