題目列表(包括答案和解析)
如圖,已知圓錐體
的側面積為
,底面半徑
和
互相垂直,且
,
是母線
的中點.
![]()
(1)求圓錐體的體積;
(2)異面直線
與
所成角的大小(結果用反三角函數表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,
得
,故![]()
從而體積
.2中取OB中點H,聯結PH,AH.
由P是SB的中點知PH//SO,則
(或其補角)就是異面直線SO與PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
則
,所以異面直線SO與P成角的大arctan![]()
解:(1)由題意,
得
,
故
從而體積
.
(2)如圖2,取OB中點H,聯結PH,AH.
![]()
由P是SB的中點知PH//SO,則
(或其補角)就是異面直線SO與PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.
在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
則
,所以異面直線SO與P成角的大arctan![]()
如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將
折起,使得B與C重合于O.
(Ⅰ)設Q為AE的中點,證明:QD
AO;
(Ⅱ)求二面角O—AE—D的余弦值.
![]()
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因為Q為AE的中點,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
第二問中,作MN
AE,垂足為N,連接DN
因為AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因為AO
DM ,DM
平面AOE
因為MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
![]()
(1)取AO中點M,連接MQ,DM,由題意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因為Q為AE的中點,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
(2)作MN
AE,垂足為N,連接DN
因為AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因為AO
DM ,DM
平面AOE
因為MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=![]()
二面角O-AE-D的平面角的余弦值為![]()
設數列
的各項均為正數.若對任意的
,存在
,使得
成立,則稱數列
為“Jk型”數列.
(1)若數列
是“J2型”數列,且
,
,求
;
(2)若數列
既是“J3型”數列,又是“J4型”數列,證明:數列
是等比數列.
【解析】1)中由題意,得
,
,
,
,…成等比數列,且公比
,
所以.![]()
(2)中證明:由{
}是“j4型”數列,得
,…成等比數列,設公比為t. 由{
}是“j3型”數列,得
,…成等比數列,設公比為
;
,…成等比數列,設公比為
;
…成等比數列,設公比為
;
已知m>1,直線
,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點
時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A![]()
、△B![]()
的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[
【解析】第一問中因為直線
經過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為![]()
第二問中設
,由
,消去x,得
,
則由
,知
<8,且有![]()
由題意知O為![]()
的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com