題目列表(包括答案和解析)
設(shè)函數(shù)f(x)=
在[1,+∞
上為增函數(shù).
(1)求正實數(shù)a的取值范圍;
(2)比較
的大小,說明理由;
(3)求證:
(n∈N*, n≥2)
【解析】第一問中,利用
解:(1)由已知:
,依題意得:
≥0對x∈[1,+∞
恒成立
∴ax-1≥0對x∈[1,+∞
恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=
在[1,+∞)上為增函數(shù),
∴n≥2時:f(
)=
(3) ∵
∴![]()
已知函數(shù)![]()
;
(1)若函數(shù)
在其定義域內(nèi)為單調(diào)遞增函數(shù),求實數(shù)
的取值范圍。
(2)若函數(shù)
,若在[1,e]上至少存在一個x的值使
成立,求實數(shù)
的取值范圍。
【解析】第一問中,利用導(dǎo)數(shù)
,因為
在其定義域內(nèi)的單調(diào)遞增函數(shù),所以
內(nèi)滿足
恒成立,得到結(jié)論第二問中,在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,轉(zhuǎn)換為不等式有解來解答即可。
解:(1)
,
因為
在其定義域內(nèi)的單調(diào)遞增函數(shù),
所以
內(nèi)滿足
恒成立,即
恒成立,
亦即
,
即可 又![]()
當(dāng)且僅當(dāng)
,即x=1時取等號,
在其定義域內(nèi)為單調(diào)增函數(shù)的實數(shù)k的取值范圍是
.
(2)在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,設(shè)![]()
上的增函數(shù),
依題意需![]()
實數(shù)k的取值范圍是![]()
(08年濱州市質(zhì)檢三文) 給出如下三個命題:①設(shè)a,b∈R,且ab≠0,若a>b,則
;②四個非零實數(shù)a,b,c,d依次成等比數(shù)列的充要條件是ad=bc;③圓
上任意一點M關(guān)于直線
的對稱點
也在該圓上;④已知函數(shù)
,則
對
恒成立的t的取值范圍是t≥1.
其中正確命題的個數(shù)為 ( )
A.1 B.2 C.3 D.0
已知函數(shù)
,
.
(Ⅰ)若函數(shù)
依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實數(shù)
,使對任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在
處取到極值點可知導(dǎo)數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。
第二問中,利用存在實數(shù)
,使對任意的
,不等式
恒成立轉(zhuǎn)化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
![]()
(2)不等式
,即
,即
.
轉(zhuǎn)化為存在實數(shù)
,使對任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
設(shè)
,則.![]()
設(shè)
,則
,因為
,有
.
故
在區(qū)間
上是減函數(shù)。又![]()
故存在
,使得
.
當(dāng)
時,有
,當(dāng)
時,有
.
從而
在區(qū)間
上遞增,在區(qū)間
上遞減.
又
[來源:]
![]()
所以當(dāng)
時,恒有
;當(dāng)
時,恒有![]()
;
故使命題成立的正整數(shù)m的最大值為5
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com