題目列表(包括答案和解析)
已知
,
,
分別為
三個內角
,
,
的對邊,
.
(Ⅰ)求
;
(Ⅱ)若
=2,
的面積為
,求
,
.
【命題意圖】本題主要考查正余弦定理應用,是簡單題.
【解析】(Ⅰ)由
及正弦定理得
![]()
由于
,所以
,
又
,故
.
(Ⅱ)
的面積
=
=
,故
=4,
而
故
=8,解得
=2
在△ABC中,
為三個內角
為三條邊,
且![]()
(I)判斷△ABC的形狀;
(II)若
,求
的取值范圍.
【解析】本題主要考查正余弦定理及向量運算
第一問利用正弦定理可知,邊化為角得到![]()
![]()
所以得到B=2C,然后利用內角和定理得到三角形的形狀。
第二問中,
![]()
得到。
(1)解:由
及正弦定理有:![]()
∴B=2C,或B+2C
,若B=2C,且
,∴
,
;∴B+2C
,則A=C,∴
是等腰三角形。
(2)
![]()
已知
中,
,
.設
,記
.
(1) 求
的解析式及定義域;
(2)設
,是否存在實數
,使函數
的值域為
?若存在,求出
的值;若不存在,請說明理由.
【解析】第一問利用(1)如圖,在
中,由
,,
可得
,
又AC=2,故由正弦定理得
(2)中
由
可得![]()
![]()
.顯然,
,則
1
當m>0的值域為![]()
m+1=3/2,n=1/2
2
當m<0,不滿足
的值域為
;
因而存在實數m=1/2
的值域為
.
在△ABC中,內角A、B、C所對邊的邊長分別是a、b、c,已知c=2,C=
.
(Ⅰ)若△ABC的面積等于
,求a、b;
(Ⅱ)若
,求△ABC的面積.
【解析】第一問中利用余弦定理及已知條件得
又因為△ABC的面積等于
,所以
,得
聯立方程,解方程組得
.
第二問中。由于
即為即
.
當
時,
,
,
,
所以
當
時,得
,由正弦定理得
,聯立方程組
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得
,………1分
又因為△ABC的面積等于
,所以
,得
,………1分
聯立方程,解方程組得
.
……………2分
(Ⅱ)由題意得![]()
,
即
.
…………2分
當
時,
,
,
,
……1分
所以
………………1分
當
時,得
,由正弦定理得
,聯立方程組
,解得
,
;
所以![]()
已知向量
=(
),
=(
,![]()
),其中(
).函數
,其圖象的一條對稱軸為
.
(I)求函數
的表達式及單調遞增區間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若
=1,b=l,S△ABC=
,求a的值.
【解析】第一問利用向量的數量積公式表示出![]()
,然后利用
得到
,從而得打解析式。第二問中,利用第一問的結論,表示出A,結合正弦面積公式和余弦定理求解a的值。
解:因為
![]()
由余弦定理得
,……11分故![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com