題目列表(包括答案和解析)
(本小題滿分14分) 如圖,已知四棱錐P-ABCD中,PA⊥平面CDAB, ABCD是直角梯形,AD∥BC,∠BAD
90º,BC
2,PA
AB
1.
(1)求證:PD⊥AB;
(2)在線段PB上找一點(diǎn)E,使AE//平面PCD;
(3)求點(diǎn)D到平面PBC的距離.
(本小題滿分14分)如圖,在直角梯形
中AD//BC,
, 直角梯形
與矩形
所在平面垂直,將矩形
沿
對(duì)折,使得翻折后點(diǎn)
落在
上,設(shè)
.
求證:
;
求線段
的最小值,并指出此時(shí)點(diǎn)
的位置;
當(dāng)
長度最小時(shí),求直線
與平面
所成的角的正弦值;
(本小題滿分14分)如圖,在直角梯形
中,
,
,
平面
,
,
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)設(shè)
的中點(diǎn)為
,且
,試求出四棱錐
的體積
(本小題滿分14分)如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=
AD=1,CD=
.
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C為30°,設(shè)PM=tMC,
試確定t的值
![]()
(執(zhí)信中學(xué)、中山紀(jì)念中學(xué)、深圳外語)三校聯(lián)考 09.02
一.選擇題:
二.填空題:9.1;
10.15;
11.


13.
;
14.
;
15.
.
三.解答題:
16.(1)
=
=
2分
=
=
4分
6分
(2)
=
=
=
=
9分
由
,得
10分
11分
當(dāng)
, 即
時(shí),
12分
17.(1)由已知,
的取值為
.
2分
,
,
,
8分

7
8
9
10





的分布列為:
9分
(2)
11分
12分
18.(1)由
.且
得
2分
,
4分
在
中,令
得
當(dāng)
時(shí),T
=
,
兩式相減得
,
6分
.
8分
(2)
,
9分
,
, 10分
=2
=
,
13分
14分
19、(Ⅰ)在梯形
中,
,


四邊形
是等腰梯形,
且

2分
又
平面
平面
,交線為
,
平面
4分
(Ⅱ)解法一、當(dāng)
時(shí),
平面
,
5分
在梯形
中,設(shè)
,連接
,則
6分
,而
,
7分
,
四邊形
是平行四邊形,
8分
又
平面
,
平面
平面
9分
解法二:當(dāng)
時(shí),
平面
,
由(Ⅰ)知,以點(diǎn)
為原點(diǎn),
所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系, 5分
則
,
,
,
,
,
平面
,

平面

與
、
共面,