2009年安慶市高三模擬考試(二模)
數(shù)學(xué)試題(文科)
班級(jí): 姓名: 學(xué)號(hào): 成績(jī):
考生注意:
本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分,滿(mǎn)分為150分.考試時(shí)間120
第I卷 (選擇題 共60分)
一、選擇題 本大題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是最符合題目要求的,請(qǐng)把正確的答案填在題后的括號(hào)內(nèi)。
1.復(fù)數(shù)Z滿(mǎn)足
,則復(fù)數(shù)Z的模為( )
A.2
B
D.![]()
2.設(shè)
,則
的充分不必要條件是( )
A.
B.
C.
D.![]()
3.一個(gè)幾何體的三視圖如圖所示,則該幾何體外接球的表面積為(
)
A.
/3
B.
/3
C.
/3
D.
/3
4.如果
,那么不等式
的解集是( )
A.[0,1] B.[-1,0] C.[-1,1] D.[1/4, 3/4]
5.拋物線(xiàn)
的準(zhǔn)線(xiàn)經(jīng)過(guò)等軸雙曲線(xiàn)
的左焦點(diǎn),則
( )
A.
/2
B.
C.
2
D. 4![]()
6.將一個(gè)各個(gè)面上涂有顏色的正方體鋸成27各同樣大小的正方體,從這些小正方體中任取1個(gè),則恰有兩面涂有顏色的概率是( )
A.4/27
B.2/
7.在數(shù)列
中,對(duì)
,都有
,則( )
A.
B. (
)/
)/4
D. (
)/8
8.已知
,則
的值等于( )
A.120/169
B.119/
9.設(shè)函數(shù)
的圖像關(guān)于直線(xiàn)
及直線(xiàn)
對(duì)稱(chēng),且
時(shí),
,則
( )
A.1/2
B.1/
10.已知:
均為正數(shù),
,則使
恒成立
的取值范圍是( )
A.
B.
C.
D.
![]()
11已知直線(xiàn)
與圓
,交與不同的兩點(diǎn)A、B,O是坐標(biāo)原點(diǎn),若
,則
的取值范圍是( )
A.
B.
C.
D![]()
12.設(shè)函數(shù)
,給出下列四個(gè)命題:①
時(shí),是
奇函數(shù);②
時(shí),方程
只有一個(gè)實(shí)根;③
的圖像關(guān)于
對(duì)稱(chēng);④方程
至多有兩個(gè)實(shí)根。其中正確的命題是( )
A.①④ B.①③ C.①②③ D. ②④
第Ⅱ卷(非選擇題 共90分)
二、填空題 本大題共4小題,每小題4分,共16分.把答案填在題中橫線(xiàn)上.
13.若規(guī)定
,則不等式
的解集為
。
14.右面框圖表示的程序所輸出的結(jié)果是
。
15.已知集合
,
,
,對(duì)于B中的任意元素M,則
的概率P的最大值為
。
16.給出下列四個(gè)結(jié)論:
①合情推理是由特殊到一般的推理,得到的結(jié)論不一定正確,演繹推理是由一般到特殊的推理,得到的結(jié)論一定正確;
②一般地,當(dāng)r的絕對(duì)值大于0.75時(shí),認(rèn)為兩個(gè)變量之間有很強(qiáng)的線(xiàn)性相關(guān)關(guān)系,如果變量y與x之間的相關(guān)系數(shù)r=-0.9568,則變量y與x之間具有線(xiàn)性關(guān)系;
③用獨(dú)立性檢驗(yàn)(2Χ2列聯(lián)表法)來(lái)考察兩個(gè)分類(lèi)變量是否有關(guān)系時(shí),算出的隨機(jī)變量k2的值越大,說(shuō)明“x與y有關(guān)系”成立的可能性越大;
④命題P:
使得
,則
均有
。
其中結(jié)論正確的序號(hào)為 。(寫(xiě)出你認(rèn)為正確的所有結(jié)論的序號(hào))
三、解答題 本大題共6小題,共74分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
17. (本小題滿(mǎn)分12分)
某班甲乙兩同學(xué)的高考備考成績(jī)?nèi)缦拢?/p>
甲:512,554,528,549,536,556,534,541,522,538;
乙:515,558,521,543,532,559,536,548,527,531。
(1)用莖葉圖表示兩學(xué)生的成績(jī);
(2)分別求兩學(xué)生成績(jī)的中位數(shù)和平均分。
18. (本小題滿(mǎn)分12分)
在三角形ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且
。
(1)求角C的大小;
(2)若向量
,向量
,
,
求a、b、c的值。
19. (本小題滿(mǎn)分12分)
如圖,已知在直四棱柱ABCD-A1B
,AB//DC,DC=DD1=2AD=2AB=2。
(1)求證:
平面B1BCC1;
(2)設(shè)E是DC上一點(diǎn),試確定E的位置,使得D1E//平面A1BD,并說(shuō)明理由。
20. (本小題滿(mǎn)分12分)
已知二次函數(shù)
的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為
,數(shù)列
的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)
均在函數(shù)
的圖像上。
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,Tn是數(shù)列
的前n項(xiàng)和,求使得
對(duì)所有
都成立的最小正整數(shù)m。
21. (本小題滿(mǎn)分13分)
已知函數(shù)
,
,其中
是
的導(dǎo)函數(shù)。
(1)對(duì)滿(mǎn)足
的一切a的值,都有
,求實(shí)數(shù)
的取值范圍;
(2)設(shè)
,當(dāng)實(shí)數(shù)
在什么范圍內(nèi)變化時(shí),函數(shù)
的圖像與直線(xiàn)
只有一個(gè)公共點(diǎn)。
22. (本小題滿(mǎn)分13分)
如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過(guò)點(diǎn)M(2,1),平行于OM的直線(xiàn)L在y軸上的截距為m(m≠0),L交橢圓于A、B兩個(gè)不同點(diǎn)。
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線(xiàn)MA、MB與x軸始終圍成一個(gè)等腰三角形。
2009年安慶市高三模擬考試(二模)
一.選擇題
1.B 2.B 3. A 4.A 5.C 6. D 7.B 8.D 9.B 10.A 11.C 12.C
二.填空題
13.(1,
)∪(
,2)
14.
15.
16. ②③④
三.解答題
17.解:(1)兩學(xué)生成績(jī)績(jī)的莖葉圖如圖所示……………4分
(2)將甲、乙兩學(xué)生的成績(jī)從小到大排列為:
甲: 512 522 528 534 536 538 541 549 554 556
乙:515 521 527 531 532 536 543 548 558 559
從以上排列可知甲學(xué)生成績(jī)的中位數(shù)為
……6分
乙學(xué)生成績(jī)的中位數(shù)為
…………8分
甲學(xué)生成績(jī)的平均數(shù)為:
……………10分
乙學(xué)生成績(jī)的平均數(shù)為:
……………12分
18.解:(1)∵學(xué)文).files/image203.gif)
∴
,
∴
,∴
∵
∈(0,π)
∴
……4分
(2)∵
∴
,即
①
…………6分
又
∴
,即
② …………8分
由①②可得
,∴
………………………………………10分
又
∴
, ……………………………………12分
高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第1頁(yè)
19.(I)設(shè)
是
的中點(diǎn),連結(jié)
,則四邊形
為正方形,……………2分
.故
,
,
,
,即
.
………………………4分
又
,學(xué)文).files/image257.gif)
平面
,…………………………6分
(II)證明:DC的中點(diǎn)即為E點(diǎn), ………………………………………………8分
連D1E,BE
∴四邊形ABED是平行四邊形,
∴AD
BE,又AD
A1D1 學(xué)文).files/image270.gif)
A1D1 ∴四邊形A1D1EB是平行四邊形
D1E//A1B
,
∵D1E
平面A1BD ∴D1E//平面A1BD。……………………………………………12分
20.解:(1)設(shè)這二次函數(shù)f(x)=ax2+bx
(a≠0) ,則
得a=3 , b=-2, 所以 f(x)=3x2-2x. ……………………………………3分
又因?yàn)辄c(diǎn)
均在函數(shù)
的圖像上,所以
=3n2-2n.
當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-
=6n-5.
當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 (
)………6分
(2)由(1)得知
=
=
,……8分
故Tn=
=學(xué)文).files/image296.gif)
=
(1-
)………10分
因此,要使
(1-
)<
(
)成立的m,必須且僅須滿(mǎn)足
≤
,即m≥10,所以滿(mǎn)足要求的最小正整數(shù)m為10. ………………………12分
由-1≤a≤1的一切a的值,都有g(shù)(x)<0
-
<x<1 …………6分
高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第2頁(yè)
(2)
a=
時(shí),
, 函數(shù)y=f(x)的圖像與直線(xiàn)y=3只有一個(gè)公共點(diǎn),
即函數(shù)F(x)=
的圖像與x軸只有一個(gè)公共點(diǎn)。………8分
由
知,
若m=0,則 F(x)=0顯然只有一個(gè)根;
若m≠0,則F(x)在x=-
點(diǎn)取得極大值,在x=
點(diǎn)取得極小值.
因此必須滿(mǎn)足F(-
)<0或F(
)>0,
即學(xué)文).files/image326.gif)
-
<m<0或0<m<學(xué)文).files/image328.gif)
綜上可得 -
<m <
.
………………13分
22.解:(1)設(shè)橢圓方程為
,則
.
∴橢圓方程為
……………………4分
(2)∵直線(xiàn)l平行于OM,且在y軸上的截距為m, 又KOM=
,
,聯(lián)立方程有
, ∵直線(xiàn)l與橢圓交于A.B兩個(gè)不同點(diǎn),
…………8分
(3)設(shè)直線(xiàn)MA,MB的斜率分別為k1,k2,只需證明k1+k2=0即可
設(shè)
,
則
由學(xué)文).files/image350.gif)
高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第3頁(yè)
學(xué)文).files/image352.gif)
而學(xué)文).files/image354.gif)
學(xué)文).files/image356.gif)
學(xué)文).files/image358.gif)
學(xué)文).files/image360.gif)
故直線(xiàn)MA,MB與x軸始終圍成一個(gè)等腰三角形. ……………………13分
高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第4頁(yè)
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com