在
中,AB=AC,過點(diǎn)A的直線與其外接圓交于點(diǎn)P,交BC延長線于點(diǎn)D。![]()
(1)求證:
;
(2)若AC=3,求
的值。
(1)主要是利用圓的內(nèi)接四邊形的性質(zhì),結(jié)合相似來證明。
(2)根據(jù)△PAB~BAD 的相似來得到長度的求解。
解析試題分析:(1) 證明:連結(jié)BP,∵四邊形ABCP內(nèi)接于圓,![]()
∴∠PCD=∠BAD 又∠PDC=∠BDA
∴△PCD~△BAD
∴![]()
又∵AB=AC
∴
(5分)
(2)連結(jié)BP。∵AB=AC,∴∠ABC=∠ACB
又∵四邊形ABCP內(nèi)接于圓 ∴∠ACB=∠APB
從而∠ABC=∠APB 又∠BAP=∠BAD
∴△PAB~BAD ∴
∴![]()
又∵AB=AC=3 ∴
=
(10分)
考點(diǎn):平面幾何中圓的性質(zhì)運(yùn)用
點(diǎn)評(píng):主要是考查了相似三角形以及圓內(nèi)的幾何性質(zhì)的運(yùn)用,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
為△
外接圓的切線,
的延長線交直線
于點(diǎn)
,
分別為弦
與弦
上的點(diǎn),且
,
四點(diǎn)共圓. ![]()
(Ⅰ)證明:
是△
外接圓的直徑;
(Ⅱ)若
,求過
四點(diǎn)的圓的面積與△
外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓O的直徑,C,D是圓O上兩點(diǎn),AC與BD相交于點(diǎn)E,GC,GD是圓O的切線,點(diǎn)F在DG的延長線上,且
。求證:
(Ⅰ)D、E、C、F四點(diǎn)共圓; (Ⅱ)![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是⊙O的直徑,C、E為⊙O上的點(diǎn),CA平分∠BAE,CF⊥AB, F是垂足,CD⊥AE,交AE延長線于D.![]()
(I)求證:DC是⊙O的切線;
(Ⅱ)求證:AF.FB=DE.DA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),
且BC
AE=DC
AF,B、E、F、C四點(diǎn)共圓.![]()
(Ⅰ)證明:CA是△ABC外接圓的直徑;
(Ⅱ)若DB=BE=EA,求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.求證:(1)△ABC≌△DCB (2)DE·DC=AE·BD.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
,
,
,
四點(diǎn)共圓,
與
的延長線交于點(diǎn)
,點(diǎn)
在
的延長線上.![]()
(1)若
,
,求
的值;
(2)若
∥
,求證:線段
,
,
成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
選修4—1:幾何證明選講
如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD//AP,AD、BC相交于 E點(diǎn),F(xiàn)為CE上一點(diǎn),且![]()
![]()
(1)求證:A、P、D、F四點(diǎn)共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4—1:幾何證明選講
如圖,四邊形
是邊長為
的正方形,以
為圓心,
為半徑的圓弧與以
為直徑的半圓
交于點(diǎn)
,延長
交
于
.![]()
(1)求證:
是
的中點(diǎn);
(2)求線段
的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com