(本小題滿分12分)已知f(x)=
(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=
的兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(1)A={a|-1≤a≤1}(2){m|m≥2,或m≤-2}.
解析試題分析:解:(Ⅰ)f'(x)=
=
,
∵f(x)在[-1,1]上是增函數(shù),∴f'(x)≥0對(duì)x∈[-1,1]恒成立,
即x2-ax-2≤0對(duì)x∈[-1,1]恒成立. ①
設(shè)
(x)=x2-ax-2,
①
∵對(duì)x∈[-1,1],f(x)是連續(xù)函數(shù),且只有當(dāng)a=1時(shí),f'(-1)=0以及當(dāng)a=-1時(shí),f'(1)=0,∴A={a|-1≤a≤1}.
(Ⅱ)由
=
,得x2-ax-2=0, ∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的兩非零實(shí)根,
∴
從而|x1-x2|=
=
.
∵-1≤a≤1,∴|x1-x2|=
≤3.
要使不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立,
當(dāng)且僅當(dāng)m2+tm+1≥3對(duì)任意t∈[-1,1]恒成立,
即m2+tm-2≥0對(duì)任意t∈[-1,1]恒成立. ②
設(shè)g(t)=m2+tm-2=mt+(m2-2),
g(-1)=m2-m-2≥0,
② ![]()
g(1)=m2+m-2≥0, n
m≥2或m≤-2.
所以,存在實(shí)數(shù)m,使不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.
考點(diǎn):函數(shù)與方程,以及不等式的綜合
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用的單調(diào)性分離參數(shù)的思想得到參數(shù)a的范圍,同時(shí)利用不等式的恒成立來(lái)分析得到m的范圍,屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若
無(wú)極值點(diǎn),但其導(dǎo)函數(shù)
有零點(diǎn),求
的值;
(Ⅱ)若
有兩個(gè)極值點(diǎn),求
的取值范圍,并證明
的極小值小于
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
(1)![]()
(2)是否存在實(shí)數(shù)
,使
在
上的最小值為
,若存在,求出
的值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線
過(guò)點(diǎn)P(1,3),且在點(diǎn)P處的切線
恰好與直線
垂直.求 (Ⅰ) 常數(shù)
的值; (Ⅱ)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
已知函數(shù)![]()
(1)求
;
(2)求過(guò)點(diǎn)A(0,16)的曲線
的切線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
設(shè)
,點(diǎn)P(
,0)是函數(shù)
的圖象的一個(gè)公共點(diǎn),兩函數(shù)的圖象在點(diǎn)P處有相同的切線.
(1)用
表示a,b,c;
(2)若函數(shù)
在(-1,3)上單調(diào)遞減,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
在區(qū)間[0,1]上是增函數(shù),在區(qū)間
上是減函數(shù),又![]()
(Ⅰ)求
的解析式;
(Ⅱ)若在區(qū)間
(m>0)上恒有
≤
成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知函數(shù)
,
,
,其中
且
.
(I)求函數(shù)
的導(dǎo)函數(shù)
的最小值;
(II)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間及極值;
(III)若對(duì)任意的
,函數(shù)
滿足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com