【題目】已知函數f(x)=(k+
)lnx+
,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為
A. (
,+∞) B. (
,+∞) C. [
,+∞) D. [
,+∞)
科目:高中數學 來源: 題型:
【題目】我國在北宋1084年第一次印刷出版了《算經十書》,即賈憲的《黃帝九章算法細草》,劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學啟蒙》和《四元玉鑒》.這些書中涉及的很多方面都達到古代數學的高峰,其中一些“算法”如開立方和開四次方也是當時世界數學的高峰.某圖書館中正好有這十本書現在小明同學從這十本書中任借兩本閱讀,那么他取到的書的書名中有“算”字的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著城市地鐵建設的持續推進,市民的出行也越來越便利.根據大數據統計,某條地鐵線路運行時,發車時間間隔t(單位:分鐘)滿足:4≤t≤15,
N,平均每趟地鐵的載客人數p(t)(單位:人)與發車時間間隔t近似地滿足下列函數關系:
,其中
.
(1)若平均每趟地鐵的載客人數不超過1500人,試求發車時間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為
(單位:元),問當發車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,某游樂園的一個摩天輪半徑為10米,輪子的底部在地面上2米處,如果此摩天輪每20分鐘轉一圈,當摩天輪上某人經過
處時開始計時(按逆時針方向轉),
(其中
平行于地面).
![]()
(1)求開始轉動5分鐘時此人相對于地面的高度.
(2)開始轉動
分鐘時,摩天輪上此人經過點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,D,E分別為AB,AC的中點,O為DE的中點,AB=AC=2
,BC=4.將△ADE沿DE折起到△A1DE的位置,使得平面A1DE
平面BCED,如下圖.
![]()
(Ⅰ)求證:A1O
BD;
(Ⅱ)求直線A1C和平面A1BD所成角的正弦值;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com