【題目】設(shè)f(x)=
則f(f(2))的值為;若f(x)=a有兩個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為 .
【答案】2;[1,2e)
【解析】解:由分段函數(shù)得f(2)=log33=1,f(1)=2e1﹣1=2e0=2,
作出函數(shù)f(x)的圖象如圖:
當(dāng)x≥2時(shí),函數(shù)f(x)=log3(x2﹣1)為增函數(shù),
則f(x)≥f(2)=1,
當(dāng)x<2時(shí),f(x)=2ex﹣1 , 為增函數(shù),
則0<f(x)<2e,
∴要使f(x)=a有兩個(gè)不等的實(shí)數(shù)根,
則1≤a<2e,
所以答案是:2,[1,2e)![]()
【考點(diǎn)精析】本題主要考查了函數(shù)的零點(diǎn)與方程根的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)才能正確解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
的圓心在直線
上,且圓
經(jīng)過(guò)點(diǎn)
與點(diǎn)
.
(1)求圓
的方程;
(2)過(guò)點(diǎn)
作圓
的切線,求切線所在的直線的方程.
【答案】(1)
;(2)
或
.
【解析】試題分析:(1)求出線段
的中點(diǎn)
,進(jìn)而得到線段
的垂直平分線為
,與
聯(lián)立得交點(diǎn)
,∴
.則圓
的方程可求
(2)當(dāng)切線斜率不存在時(shí),可知切線方程為
.
當(dāng)切線斜率存在時(shí),設(shè)切線方程為
,由
到此直線的距離為
,解得
,即可到切線所在直線的方程.
試題解析:((1)設(shè) 線段
的中點(diǎn)為
,∵
,
∴線段
的垂直平分線為
,與
聯(lián)立得交點(diǎn)
,
∴
.
∴圓
的方程為
.
(2)當(dāng)切線斜率不存在時(shí),切線方程為
.
當(dāng)切線斜率存在時(shí),設(shè)切線方程為
,即
,
則
到此直線的距離為
,解得
,∴切線方程為
.
故滿足條件的切線方程為
或
.
【點(diǎn)睛】本題考查圓的方程的求法,圓的切線,中點(diǎn)弦等問(wèn)題,解題的關(guān)鍵是利用圓的特性,利用點(diǎn)到直線的距離公式求解.
【題型】解答題
【結(jié)束】
20
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本
(單位:萬(wàn)元)與產(chǎn)品銷售收入
(單位:萬(wàn)元)存在較好的線性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).
| 7 | 10 | 11 | 15 | 17 |
| 19 | 22 | 25 | 30 | 34 |
(1)求
關(guān)于
的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬(wàn)元的毛利率更大還是投入成本24萬(wàn)元的毛利率更大(
)?
相關(guān)公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,定義兩點(diǎn)A(xA , yA),B(xB , yB)間的“L﹣距離”為d(A﹣B)=|xA﹣xB|+|yA﹣yB|.現(xiàn)將邊長(zhǎng)為1的正三角形按如圖所示方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合,記邊AB所在的直線斜率為k(0≤k≤
),則d(B﹣C)取得最大值時(shí),邊AB所在直線的斜率為 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,
是雙曲線
的左,右焦點(diǎn),點(diǎn)
在雙曲線上,且
,則下列結(jié)論正確的是( )
A. 若
,則雙曲線離心率的取值范圍為![]()
B. 若
,則雙曲線離心率的取值范圍為![]()
C. 若
,則雙曲線離心率的取值范圍為![]()
D. 若
,則雙曲線離心率的取值范圍為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓內(nèi)接四邊形ABCD中,BD是圓的直徑,AB=AC,延長(zhǎng)AD與BC的延長(zhǎng)線相交于點(diǎn)E,作EF⊥BD于F. ![]()
(1)證明:EC=EF;
(2)如果DC=
BD=3,試求DE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的最小正周期是
,且當(dāng)
時(shí),
取得最大值3.
(1)求
的解析式及單調(diào)增區(qū)間;
(2)若
,且
,求
;
(3)將函數(shù)
的圖象向右平移
個(gè)單位長(zhǎng)度后得到函數(shù)
的圖象,且
是偶函數(shù),求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線
的焦點(diǎn)為F,動(dòng)點(diǎn)P在直線
上運(yùn)動(dòng),過(guò)P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點(diǎn).
(1)求△APB的重心G的軌跡方程.
(2)證明∠PFA=∠PFB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足0<an<1,且an+1+
=2an+
(n∈N*).
(1)證明:an+1<an;
(2)若a1=
,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 證明:
﹣
<Sn<
﹣2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球n個(gè),已知從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是
.
(1)求n的值;
(2)從袋子中不放回地隨機(jī)抽取2個(gè)球,記第一次取出小球標(biāo)號(hào)為a,第二次取出的小球標(biāo)號(hào)為b.①記“a+b=2”為事件A,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個(gè)實(shí)數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com