如圖,四棱錐P-ABCD的底面為一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E為PC的中點.
![]()
(1)證明EB∥平面PAD.
(2)若PA=AD,證明BE⊥平面PDC.
|
證明:如圖,建立空間直角坐標系,
設AB=1,則CD=2.設AD=b,AP=c. (1)方法一: ∵B(0,1,0),E( ∴ ∴ 又AD∩AP=A,BE ∴EB∥平面PAD. 方法二:∵ 平面PAD的一個法向量為n=(0,1,0). ∴ 又BE (2)方法一:∵PA=AD,∴ 又 ∴ ∴BE⊥DP,BE⊥DC. ∵DP∩DC=D,∴BE⊥平面PDC. 方法二:設平面PCD的法向量為n1=(x1,y1,z1), 則 ∵ ∴ ∴n1=(-1,0,1). 又∵ ∴ ∴BE⊥平面PDC. |
|
根據圖形特點,建立空間直角坐標系,利用向量知識解決問題.關鍵是把其中各個點的坐標寫準確. |
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
| 3 |
| ||
| 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
| 1 | 2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com