如圖,長方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點(diǎn).![]()
(1)求證:平面
平面
;
(2)在底面A1D1上有一個靠近D1的四等分點(diǎn)H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.
(1)
,![]()
,
(2) 取A1D1的中點(diǎn)P,D1P的中點(diǎn)H,連結(jié)DP、EH,則DP∥B1G,EH∥DP,∴EH∥B1G ∴EH∥平面FGB1 (3)![]()
解析試題分析:(1)
![]()
![]()
(2)取A1D1的中點(diǎn)P,D1P的中點(diǎn)H,連結(jié)DP、EH,則DP∥B1G,EH∥DP,
∴EH∥B1G,又B1G?平面FGB1,∴EH∥平面FGB1.
即H在A1D1上,且HD1=
A1D1時,EH∥平面FGB1.
(3)∵EH∥平面FGB1,∴VE—FGB1=VH—FGB1,
而VH—FGB1=VG—HFB1=
×1×S△HFB1,
S△HFB1=S梯形B1C1D1H-S△B1C1F-S△D1HF=
,
∴V四面體EFGB1=VE—FGB1=VH—FGB1=
×1×
=
.
考點(diǎn):線面面面垂直平行的判定及錐體體積求解
點(diǎn)評:本題還可用空間向量的方法證明計算,思路簡單
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
是邊長為
的正方形,
平面
,
,
,
與平面
所成角為
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)線段
上是否存在點(diǎn)
,使得
平面
?若存在,試確定點(diǎn)
的位置;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在□ABCD中,∠DAB=60°,AB=2,AD="4." 將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD. ![]()
(1)求證:AB⊥DE;
(2)求三棱錐E—ABD的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)如圖,在四棱錐
中,底面
是正方形,側(cè)棱
底面
,
,
是
的中點(diǎn),作
交
于點(diǎn)![]()
![]()
(1)證明:
平面
.
(2)證明:
平面
.
(3)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體
中
,
為
中點(diǎn).![]()
(1)求證:
;
(2)在棱
上是否存在一點(diǎn)
,使得
平面
若存在,求
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,在四棱錐
中,底面
為平行四邊形,
平面
,![]()
![]()
在棱
上.![]()
(I)當(dāng)
時,求證
平面![]()
(II)當(dāng)二面角
的大小為
時,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)如圖,在直三棱柱
中,
、
分別是
、
的中點(diǎn),點(diǎn)
在
上,
.
求證:(1)EF∥平面ABC;
(2)平面![]()
平面
.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com