(1)試求函數f(x)的最大值和最小值;
(2)試比較f(
n)與
n+2的大小(n∈N);
(3)某人發現:當x=
n(n∈N)時,有f(x)<2x+2.由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你判斷此猜想是否正確,并說明理由.
解:(1)設0≤x1<x2≤1,則必存在實數t∈(0,1),使得x2=x1+t,
由條件③得,f(x2)=f(x1+t)≥f(x1)+f(t)-2,
∴f(x2)-f(x1)≥f(t)-2,由條件②得,f(x2)-f(x1)≥0,故當0≤x≤1時,有f(0)≤f(x)≤f(1).
又在條件③中,令x1=0,x2=1,得f(1)≥f(1)+f(0)-2,即f(0)≤2,∴f(0)=2,故函數f(x)的最大值為3,最小值為2.
(2)在條件③中,令x1=x2=
,得f(
)≥2f(
n)-2,即f(
)-2≤
[f(
)-2],
故當n∈N*時,有f(
)-2≤
[f(
)-2]≤
[f(
)-2]≤…≤
[f(
)-2]=
,
即f(
)≤
+2.
又f(
)=f(1)=3≤2+
,
所以對一切n∈N,都有f(
)≤
+2.
(3)對一切x∈(0,1),都有f(x)<2x+2.
對任意滿足x∈(0,1),總存在n(n∈N),使得
<x≤
,
根據(1)(2)結論,可知:f(x)≤f(
)≤
+2,且2x+2>2×
+2=
+2,
故有f(x)<2x+2.綜上所述,對任意x∈(0,1),f(x)<2x+2恒成立.
科目:高中數學 來源: 題型:
| 1 |
| 3 |
| a-3 |
| 2 |
| x | 2 1 |
| x | 2 2 |
| x | 3 1 |
| x | 3 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| x |
| 1+x |
| 1 |
| 10 |
| 1 |
| 9 |
| 1 |
| 2 |
| 19 |
| 2 |
| 19 |
| 2 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| x |
| ||
1+
|
| x |
| 1+x |
| 1 |
| 1+x |
| x |
| 1+x |
| 1+x |
| 1+x |
| 1 | ||
2x+
|
查看答案和解析>>
科目:高中數學 來源: 題型:
| ||
| 1-x |
| 1 |
| 2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| lim |
| n→∞ |
| 4Sn-9Sn |
| 4Sn+1+9Sn+1 |
|
查看答案和解析>>
科目:高中數學 來源: 題型:
| x+1-a |
| a-x |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| ||
| 1-x |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| sinα | ||
|
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com