((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =
,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF
(如圖).
(1)當x=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為
,
求
的最大值;
![]()
![]()
(3)當
取得最大值時,求二面角D-BF-C的余弦值.
(1)略
(2)![]()
(3)-![]()
【解析】1)方法一:∵平面
平面
,![]()
![]()
AE⊥EF,∴AE⊥平面
,AE⊥EF,AE⊥BE,
又BE⊥EF,故可如圖建立空間坐標系E-xyz.
,又
為BC的中點,BC=4,
.則A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),E(0,0,0),
(-2,2,2),
(2,2,0),
(-2,2,2)
(2,2,0)=0,∴
.………………4分
方法二:作DH⊥EF于H,連BH,GH,
由平面
平面
知:DH⊥平面EBCF,
而EG
平面EBCF,故EG⊥DH.
為平行四邊形,
且
![]()
,
四邊形BGHE為正方形,∴EG⊥BH,BH
DH=H,
故EG⊥平面DBH,
而BD
平面DBH,∴ EG⊥BD.………4分
(或者直接利用三垂線定理得出結果)
(2)∵AD∥面BFC,
所以 ![]()
=VA-BFC=![]()
![]()
,
即
時
有最大值為
.
………8分
(3)設平面DBF的法向量為
,∵AE=2, B(2,0,0),D(0,2,2),
F(0,3,0),∴
………10分
(-2,2,2),
則 ![]()
![]()
![]()
,
即
,![]()
取
,∴![]()
,
面BCF一個法向量為
,………12分
則cos<
>=
,………13分
由于所求二面角D-BF-C的平面角為鈍角,所以此二面角的余弦值為-
.………14分
科目:高中數學 來源: 題型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,
為
上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年江蘇省高三上學期期中考試數學 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求實數m的值
(Ⅱ)若A
CRB,求實數m的取值范圍
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三上學期第三次月考理科數學卷 題型:解答題
(本題滿分14分)
已知點
是⊙
:
上的任意一點,過
作
垂直
軸于
,動點
滿足
。
(1)求動點
的軌跡方程;
(2)已知點
,在動點
的軌跡上是否存在兩個不重合的兩點
、
,使
(O是坐標原點),若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源:2014屆江西省高一第二學期入學考試數學 題型:解答題
(本題滿分14分)已知函數
.
(1)求函數
的定義域;
(2)判斷
的奇偶性;
(3)方程
是否有根?如果有根
,請求出一個長度為
的區間
,使![]()
![]()
;如果沒有,請說明理由?(注:區間的長度為
).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com