科目: 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知拋物線
與
軸交于
,
兩點,與
軸交于點
.
![]()
(1)求拋物線的函數表達式;
(2)若點P是位于直線BC上方拋物線上的一個動點,求△BPC面積的最大值;
(3)若點D是y軸上的一點,且以B,C,D為頂點的三角形與
相似,求點D的坐標;
(4)若點E為拋物線的頂點,點F(3,a)是該拋物線上的一點,在
軸、
軸上分別找點M、N,使四邊形EFMN的周長最小,求出點M、N的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形OABC為矩形,OA=4,OC=5,正比例函數y=2x的圖像交AB于點D,連接DC,動點Q從D點出發沿DC向終點C運動,動點P從C點出發沿CO向終點O運動.兩點同時出發,速度均為每秒1個單位,設從出發起運動了t s.
![]()
(1)求點D的坐標;
(2)若PQ∥OD,求此時t的值?
(3)是否存在時刻某個t,使S△DOP=
S△PCQ?若存在,請求出t的值,若不存在,請說明理由;
(4)當t為何值時,△DPQ是以DQ為腰的等腰三角形?
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店專門銷售某種品牌的玩具,成本為30元/件,每天的銷售量y(件)與銷售單價x(元)之間存在著如圖所示的一次函數關系.
![]()
(1)求y與x之間的函數關系式;
(2)當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)為了保證每天的利潤不低于3640元,試確定該玩具銷售單價的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為加快城鄉對接,建設美麗鄉村,某地區對A、B兩地間的公路進行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經C地沿折線ACB行駛,現開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.
(1)開通隧道前,汽車從A地到B地要走多少千米?
(2)開通隧道后,汽車從A地到B地可以少走多少千米?(結果保留根號)
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩個袋中均裝有三張除所標數值外完全相同的卡片,甲袋中的三張卡片上所標有的三個數值為﹣7,﹣1,3.乙袋中的三張卡片所標的數值為﹣2,1,6.先從甲袋中隨機取出一張卡片,用x表示取出的卡片上的數值,再從乙袋中隨機取出一張卡片,用y表示取出卡片上的數值,把x、y分別作為點A的橫坐標和縱坐標.
(1)用適當的方法寫出點A(x,y)的所有情況.
(2)求點A落在第三象限的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著移動互聯網的快速發展,基于互聯網的共享單車應運而生.為了解某小區居民使用共享單車的情況,某研究小組隨機采訪該小區的10位居民,得到這10位居民一周內使用共享單車的次數分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數據的中位數是 ,眾數是 ;
(2)計算這10位居民一周內使用共享單車的平均次數;
(3)若該小區有200名居民,試估計該小區居民一周內使用共享單車的總次數.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在正方形ABCD中,G為CD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BD交AG于F點.已知FG=2,則線段AE的長度為_____.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:
我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.
理解:
(1)如圖1,已知Rt△ABC在正方形網格中,請你只用無刻度的直尺在網格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);
(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.
求證:BD是四邊形ABCD的“相似對角線”;
(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2
,求FH的長.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,拋物線
與
軸的兩個交點分別是
、
,
為頂點.
![]()
(1)求
、
的值和頂點
的坐標;
(2)在
軸上是否存在點
,使得
是以
為斜邊的直角三角形?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,一次函數
(a≠0)的圖象與反比例函數
的圖象交于第二、第四象限內的A、B兩點,與
軸交于點C,過點A作AH⊥
軸,垂足為點H,OH=3,tan∠AOH=
,點B的坐標為(
,-2).
(1)求該反比例函數和一次函數的解析式;
(2)求△AHO的周長.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com