【題目】如圖所示,一次函數y=kx+b與反比例函數y=
的圖象交于A(2,4),B(﹣4,n)兩點.
(1)分別求出一次函數與反比例函數的表達式;
(2)過點B作BC⊥x軸,垂足為點C,連接AC,求△ACB的面積.
![]()
科目:初中數學 來源: 題型:
【題目】在下列的網格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;
(2)若點B的坐標為(-3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;
(3)根據(2)中的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并標出B2、C2兩點的坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關系如何,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+
x+c過A(﹣1,0),B(0,2)兩點.
(1)求拋物線的解析式.
(2)M為拋物線對稱軸與x軸的交點,N為x軸上對稱軸上任意一點,若tan∠ANM=
,求M到AN的距離.
(3)在拋物線的對稱軸上是否存在點P,使△PAB為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在△ABC中,∠ACB=90°,點P是線段AC上一點,過點A作AB的垂線,交BP的延長線于點M,MN⊥AC于點N,PQ⊥AB于點Q,AQ=MN. 求證:
(1)△APM是等腰三角形;
(2)PC=AN.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經過點C,且AD⊥MN于D,BE⊥MN于E.
(1)當直線MN繞點C旋轉到圖1的位置時,求證:DE=AD+BE;
(2)當直線MN繞點C旋轉到圖2的位置時,(1)中的結論還成立嗎?若成立,請給出證明;若不成立,請寫出新的結論并說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B,C,D在同一直線上,∠M=∠N,AM=BN,請你添加一個條件,使得△ACM≌△BDN,并給出證明.
(1)你添加的條件是:_____.
(2)證明:
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發,設慢車行駛的時間為x(h),兩車之間的距離為y(km),圖中折線表示y與x之間的函數關系,根據圖象進行以下探究:
信息獲取:
(1)甲、乙兩地之間的距離為 km
(2)請解釋圖中點B的實際意義;圖象理解: .
(3)求慢車和快車的速度;
(4)求出C點的坐標.
(第(3)、(4)問要求寫出求解過程).
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AD為∠BAC的平分線.
(1)如圖1,若∠C=2∠B,AB=12,AC=7.2,求線段CD的長度;
(2)如圖2,若∠BAC=2∠ABC,∠ABC的平分線BP與AD交于點P,且BP=AC,求∠C的度數.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com