【題目】四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似但不全等,我們就把這條對角線叫做這個四邊形的“相似對角線”.
![]()
(1)如圖1,在四邊形
中,
,
,
,對角線
平分
.求證:
是四邊形
的“相似對角線”;
(2)如圖2,已知格點
,請你在正方形網(wǎng)格中畫出所有的格點四邊形
,使四邊形
是以
為“相似對角線”的四邊形;(注:頂點在小正方形頂點處的多邊形稱為格點多邊形)
(3)如圖3,四邊形
中,點
在射線
:
上,點
在
軸正半軸上,對角線
平分
,連接
.若
是四邊形
的“相似對角線”,
,求點
的坐標.
【答案】(1)證明見解析;(2)見解析;(3)
.
【解析】
(1)由BD平分∠ABC可得∠ABD=∠DBC=50,則∠BDC+∠A=130°,根據(jù)∠ADC=130°可得∠ADB=∠C,即可求解;
(2)如圖所示,根據(jù)兩個三角形夾角相等,夾邊成比例,則三角形相似,即可求解;
(3)利用△AOC∽△COB,則OAOB=OC2,而S△AOB=
×OB×yA=
×OB×OAsin60°=6
,即可求解.
解:(1)∵對角線
平分
,
∴
,
∴
,
∵
,
∴
,
∴
,
∴
,
∴
是四邊形
的“相似對角線”;
(2)如下圖所示:
∵∠ABC=∠ACD1=90°,
,
∴△ABC∽△ACD1,
故:以AC為“相似對角線”的四邊形有:ABCD1,
同理可得:以AC為“相似對角線”的四邊形還有:ABCD2、ABCD3、ABCD4;![]()
(3)如圖,作
于
,
于
,
∵點![]()
:
上,
∴
,即
,
∵對角線
平分
,
∴
,
∵
是四邊形
的“相似對角線”,
∴
與
相似且不全等,
∴
,
∴
,
∴
,即
,
∵
,
∴
,
∴
,
,
∴點
的坐標為
.
![]()
故答案為:(1)證明見解析;(2)見解析;(3)
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是AB邊的中點,過D作DE⊥BC于點E,點P是邊BC上的一個動點,AP與CD相交于點Q.當AP+PD的值最小時,AQ與PQ之間的數(shù)量關系是( )
![]()
A.AQ= PQ B.AQ=3PQ C.AQ=
PQ D.AQ=4PQ
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y=
的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
![]()
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小婷在放學路上,看到隧道上方有一塊宣傳“中國﹣南亞博覽會”的豎直標語牌CD.她在A點測得標語牌頂端D處的仰角為42°,測得隧道底端B處的俯角為30°(B,C,D在同一條直線上),AB=10m,隧道高6.5m(即BC=65m),求標語牌CD的長(結(jié)果保留小數(shù)點后一位).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,
≈1.73)
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線
與
軸交于
,
兩點(點
在點
的左邊)與
軸交于點
,連接
,過點
作直線
的平行線交拋物線于另一點
,交
軸于點
,則
的值為__________.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】華聯(lián)超市用6000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的
多15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 22 | 30 |
售價(元/件) | 29 | 40 |
(1)該商場購進甲、乙兩種商品各多少件?
(2)該超市將購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】尺規(guī)作圖:過直線外一點作已知直線的平行線.
已知:如圖,直線l與直線l外一點P.
求作:過點P與直線l平行的直線.
![]()
已知:如圖,直線l與直線l外一點P.
求作:過點P與直線l平行的直線.
![]()
作法如下:
(1)在直線l上任取兩點A、B,連接AP、BP;
(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;
(3)過點P、M作直線;
(4)直線PM即為所求.
![]()
(1)在直線l上任取兩點A、B,連接AP、BP;
(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;
(3)過點P、M作直線;
(4)直線PM即為所求.
![]()
請回答:PM平行于l的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設PA=x.
(1)求證:△PFA∽△ABE;
(2)當點P在線段AD上運動時,設PA=x,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件: .
![]()
備用圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
![]()
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com