【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結論有( )個
![]()
A. 4 B. 3 C. 2 D. 1
【答案】C
【解析】解:∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等邊三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
,
Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正確).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正確),
∵BC=CD,
∴BC﹣BE=CD﹣DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正確).
設EC=x,由勾股定理,得
EF=x,CG=
x,
AG=AEsin60°=EFsin60°=2×CGsin60°=
x,
∴AC=
,
∴AB=
,
∴BE=
﹣x=
,
∴BE+DF=x﹣x≠x,(故④錯誤),
∵S△CEF=
,
S△ABE=
=
,
∴2S△ABE=
=S△CEF,(故⑤正確).
綜上所述,正確的有4個,
故選:A.
![]()
科目:初中數學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=6,第一次平移長方形ABCD沿AB的方向向右平移5個單位,得到長方形A1B1C1D1,第2次平移將長方形A1B1C1D1沿A1B1的方向向右平移5個單位,得到長方形A2B2C2D2…,第n次平移將長方形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向向右平移5個單位,得到長方形AnBnCnDn(n>2),若ABn的長度為2016,則n的值為( )
![]()
A. 400 B. 401 C. 402 D. 403
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是AB邊的中點,過D作DE⊥BC于點E,點P是邊BC上的一個動點,AP與CD相交于點Q.當AP+PD的值最小時,AQ與PQ之間的數量關系是( )
![]()
A.AQ= PQ B.AQ=3PQ C.AQ=
PQ D.AQ=4PQ
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠接受了20天內生產1200臺GH型電子產品的總任務. 已知每臺GH型產品由4個G型裝置和3個H型裝置配套組成. 工廠現有80名工人,每個工人每天能加工6個G型裝置或3個H型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數量正好全部配套組成GH型產品.
(1)按照這樣的生產方式,工廠每天能配套組成多少套GH型電子產品?
(2)為了在規定期限內完成總任務,工廠決定補充一些新工人,這些新工人只能獨立進行G 型裝置的加工,且每人每天只能加工4個G型裝置. 請問至少需要補充多少名新工人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
![]()
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是潛望鏡工作原理示意圖,陰影部分是平行放置在潛望鏡里的兩面鏡子.已知光線經過鏡子反射時,有∠1=∠2,∠3=∠4,請解釋進入潛望鏡的光線l為什么和離開潛望鏡的光線m是平行的?
請把下列解題過程補充完整.
理由:
∵AB∥CD(已知)
∴ (兩直線平行,內錯角相等)
∵∠1=∠2,∠3=∠4
∴∠1=∠2=∠3=∠4
∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(平角定義)
即: (等量代換)
∴ .
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com