【題目】一個批發商銷售成本為20元/千克的某產品,根據物價部門規定:該產品每千克售價不得超過90元,在銷售過程中發現的售量y(千克)與售價x(元/千克)滿足一次函數關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數關系式;
(2)該批發商若想獲得4000元的利潤,應將售價定為多少元?
科目:初中數學 來源: 題型:
【題目】百子回歸圖是由1,2,3,100無重復排列而成的正方形數表,它是一部數化的澳門簡史,如:中央四位“19991220”表示澳門回歸祖國日期,最后一行中間兩位“2350”表示澳門面積,…,同時它也是十階幻方,其每行10個數之和,每列10個數之和,以及兩條對角線上10個數之和均為有理數n,則4n﹣1的值為_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+3與坐標軸分別交于點A,B(﹣3,0),C(1,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線解析式;
(2)當點P運動到什么位置時,△PAB的面積最大?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P作PE∥x軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標;若不存在,說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是在浦東陸家嘴明代陸深古墓中發掘出來的寶玉﹣﹣明白玉幻方.其背面有方框四行十六格,為四階幻方(從1到16,一共十六個數目,它們的縱列、橫行與兩條對角線上4個數相加之和均為34).小明探究后發現,這個四階幻方中的數滿足下面規律:在四階幻方中,當數a,b,c,d有如圖1的位置關系時,均有a+b=c+d=17.如圖2,已知此幻方中的一些數,則x的值為__.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點P到圓心O的距離d,滿足
r,則稱點P為⊙O的“隨心點”.
(1)當⊙O的半徑r=2時,A(4,0),B(0,3),C(
,﹣
),D(﹣
,﹣2)中,⊙O的“隨心點”是 ;
(2)若點E(6,8)是⊙O的“隨心點”,求⊙O的半徑r的取值范圍;
(3)當⊙O的半徑r=4時,直線y=﹣x+b(b≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O的“隨心點”,直接寫出b的取值范圍 .
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數,且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個相同的根,求此時m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三點,其中t>0,函數
的圖象分別與線段BC,AC交于點P,Q.若S△PAB-S△PQB=t,則t的值為__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點.
![]()
(1)如圖1,過點C作⊙O的切線,與AB延長線相交于點P,若∠CAB=27°,求∠P的度數;
(2)如圖2,D為弧AB上一點,OD⊥AC,垂足為E,連接DC并延長,與AB的延長線交于點P,若∠CAB=10°,求∠P的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,甲、乙兩人分別從
兩地出發,相向而行,已知甲先出發4分鐘后,乙才出發,他們兩人在
之間的
地相遇,相遇后,甲立即返回
地,乙繼續向
地前行.甲到達
地時停止行走,乙到達
地是也停止行走,在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程
(米)與甲出發的時間
(分鐘)之間的關系如圖所示,則下列結論錯誤的是( )
![]()
A.
兩地相距2480米B.甲的速度是60米/分鐘,乙的速度是80米/分鐘
C.乙出發17分鐘后,兩人在
地相遇D.乙到達
地時,甲與
地相距的路程是300米.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com