【題目】如圖,△ABC中,AC=BC,點D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點F.
![]()
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數.
【答案】(1)見解析;(2)20°
【解析】
試題分析:(1)根據三角形的性質得到∠B=∠BAC,由三角形外角的性質得到∠ACE=∠B+∠BAC,求得∠BAC=
,由角平分線的定義得到∠ACF=∠ECF=
,等量代換得到∠BAC=∠ACF,根據平行線的判定定理即可得到結論;
(2)由等量代換得到∠ACF=∠ADF,根據三角形的內角和得到∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,由于∠AGD=∠CGF,即可得到結論.
(1)證明:∵AC=BC,
∴∠B=∠BAC,
∵∠ACE=∠B+∠BAC,
∴∠BAC=
,
∵CF平分∠ACE,
∴∠ACF=∠ECF=
,
∴∠BAC=∠ACF,
∴CF∥AB;
(2)解:∵∠BAC=∠ACF,∠B=∠BAC,∠ADF=∠B,
∴∠ACF=∠ADF,
∵∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,
又∵∠AGD=∠CGF,
∴∠F=∠CAD=20°.
科目:初中數學 來源: 題型:
【題目】如圖,A、B、C分別是線段A1B、B1C、C1A的中點,若△ABC的面積是1,那么△A1BlC1的面積是( )
![]()
A.4 B.5 C.6 D.7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,OA=5,OA⊙O相交于點P,AB與⊙O相切于點B,BP的延長線交直線l于點C.
![]()
(1)試判斷線段AB與AC的數量關系,并說明理由;
(2)若
,求⊙O的半徑和線段PB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
![]()
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,O為AB上一點,以O為圓心,OB長為半徑的圓,交BC邊于點D,與AC邊相切于點E.
![]()
(1)求證:BE平分∠ABC;
(2)若CD:BD=1:2,AC=4,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題:
油桶制造廠的某車間主要負責生產制造油桶用的圓形鐵片和長方形鐵片,該車間有工人42人,每個工人平均每小時可以生產圓形鐵片120片或者長方形鐵片80片.如圖,一個油桶由兩個圓形鐵片和一個長方形鐵片相配套.生產圓形鐵片和長方形鐵片的工人各為多少人時,才能使生產的鐵片恰好配套?
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com