【題目】請閱讀下列材料:
問題:如圖,在正方形
和平行四邊形
中,點
,
,
在同一條直線上,
是線段
的中點,連接
,
.
探究:當
與
的夾角為多少度時,平行四邊形
是正方形?
小聰同學的思路是:首先可以說明四邊形
是矩形;然后延長
交
于點
,構造全等三角形,經過推理可以探索出問題的答案.
請你參考小聰同學的思路,探究并解決這個問題.
![]()
(1)求證:四邊形
是矩形;
(2)
與
的夾角為________度時,四邊形
是正方形.
理由:
【答案】(1)詳見解析;(2)90.
【解析】
(1)由正方形ABCD,易得∠EBG=90°,根據有一個角是直角的平行四邊形是矩形,即可證得四邊形BEFG是矩形;
(2)首先作輔助線:延長GP交DC于點H,根據正方形與平行四邊形的性質,利用AAS易得△DHP≌△FGP,則有HP=GP,當∠CPG=90°時,利用SAS易證△CPH≌△CPG,根據全等三角形與正方形的性質,即可得BG=GF,根據有一組鄰邊相等的平行四邊形是菱形,可得BEFG是菱形,而∠EBG=90°,即得四邊形BEFG是正方形.
(1)∵正方形ABCD中,∠ABC=90°,
∴∠EBG=90°,
∴BEFG是矩形;
(2)90°;
理由:延長GP交DC于點H,
![]()
∵正方形ABCD和平行四邊形BEFG中,AB∥DC,BE∥GF,
∴DC∥GF,
∴∠HDP=∠GFP,∠DHP=∠FGP,
∵P是線段DF的中點,
∴DP=FP,
∴△DHP≌△FGP,
∴HP=GP,
當∠CPG=90°時,∠CPH=∠CPG,
∵CP=CP,
∴△CPH≌△CPG,
∴CH=CG,
∵正方形ABCD中,DC=BC,
∴DH=BG,
∵△DHP≌△FGP,
∴DH=GF,
∴BG=GF,
∴BEFG是菱形,
由(1)知四邊形BEFG是矩形,
∴四邊形BEFG是正方形.
科目:初中數學 來源: 題型:
【題目】閱讀以下文字并解決問題:對于形如
這樣的二次三項式,我們可以直接用公式法把它分解成
的形式,但對于二次三項式
,就不能直接用公式法分解了.此時,我們可以在
中間先加上一項
,使它與
的和構成一個完全平方式,然后再減去
,則整個多項式的值不變.即:
,像這樣,把一個二次三項式變成含有完全平方式的形式的方法,叫做配方法.
利用“配方法”因式分解:![]()
如果
,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(問題解決)
(1)如圖①,在等邊△ABC中,點M是BC邊上的任意一點(不含端點B,C),連結AM,以AM為邊作等邊△AMN,連結CN.試判斷∠ABC與∠ACN的大小關系.并說明理由.
(類比探究)
(2)如圖②在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其他條件不變,(1)中結論還成立嗎?請說明理由.
(拓展延伸)
(3)若點M是CB延長線上的任意一點(不含端點B),請直接寫出∠ACN的度數.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接
,作
的垂直平分線
分別交
,
,
于
,
,
,連接
,
,則四邊形
是菱形.
乙:分別作
,
的平分線
,
,分別交
,
于
,
,連接
,則四邊形
是菱形.
根據兩人的作法可判斷( )
![]()
A. 甲正確,乙錯誤 B. 乙正確,甲錯誤
C. 甲、乙均正確 D. 甲、乙均錯誤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在
中,點O是邊AC上一個動點,過點O作直線
//BC,分別交
,外角
的平分線于點E、F.
![]()
(1)猜想與證明,試猜想線段OE與OF的數量關系,并說明理由.
(2)連接AE,AF,問:當點O在邊AC上運動時到什么位置時,四邊形AECF是矩形?并說明理由.
(3)若AC邊上存在一點O,使四邊形AECF是正方形,猜想
的形狀并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BE⊥AC,垂足為E,AF平分∠BAC,交BE于F,點D在AC上,且AD=AB.
(1)求證:DF=BF;
(2)求證:∠ADF=∠C.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的兩條對角線相交于O,且AC平分∠DAB.
(1)求證:四邊形ABCD是菱形;
(2)若AC=8,BD=6,試求點O到AB的距離.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com