精品一区二区免费在线观看_国产精品久久久久久av福利软件_97成人精品区在线播放_国内成人精品一区

如圖.AB是圓O的直徑.PA垂直于圓O所在平面.C是圓周上任一點.設∠BAC=θ.PA=AB=2r.求異面直線PB和AC的距離. 查看更多

 

題目列表(包括答案和解析)

22、如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,C是圓周上不同于A、B的任一點,求證:平面PAC垂直于平面PBC.

查看答案和解析>>

如圖AB是圓O的直徑PA垂直于圓O所在的平面,C是圓O上不同于AB的任一點則圖中直角三角形的個數為________

 

 

查看答案和解析>>

如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,C是圓周上不同于A、B的任一點,求證:平面PAC垂直于平面PBC.

查看答案和解析>>

如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,C是圓周上不同于A、B的任意一點.
(1)求證:BC⊥平面PAC;
(2)求證:平面PAC⊥平面PBC.

查看答案和解析>>

如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,C是圓周上不同于A、B的任一點,求證:平面PAC垂直于平面PBC.
精英家教網

查看答案和解析>>

1.不改變f(x)值域,即不能縮小原函數定義域。選項B,C,D均縮小了的定義域,故選A。

2.先作出f(x,y)=0關于軸對稱的函數的圖象,即為函數f(-x,y)=0的圖象,又

f(2-x,y)=0即為,即由f(-x,y)=0向右平移2個單位。故選C。

3.命題p為真時,即真數部分能夠取到大于零的所有實數,故二次函數的判別式,從而;命題q為真時,。

    若p或q為真命題,p且q為假命題,故p和q中只有一個是真命題,一個是假命題。

    若p為真,q為假時,無解;若p為假,q為真時,結果為1<a<2,故選C.

4.圖像法解方程,也可代入各區間的一個數(特值法或代入法),選C;

5.函數f(x)的對稱軸為2,結合其單調性,選A;

6.從反面考慮,注意應用特例,選B;

7.設tan=x (x>0),則+=,解出x=2,再用萬能公式,選A;

8.利用是關于n的一次函數,設S=S=m,=x,則(,p)、(,q)、

(x,p+q)在同一直線上,由兩點斜率相等解得x=0,則答案:0;

9.設cosx=t,t∈[-1,1],則a=t-t-1∈[-,1],所以答案:[-,1];

10.設高h,由體積解出h=2,答案:24;

11.設長x,則寬,造價y=4×120+4x×80+×80≥1760,答案:1760。

12.運用條件知:=2,且

==16

13.依題意可知,從而可知,所以有

,又為正整數,取,則

,所以,從而,所以,又,所以,因此有最小值為。

下面可證時,,從而,所以, 又,所以,所以,綜上可得:的最小值為11。

14.分析:這是有關函數定義域、值域的問題,題目是逆向給出的,解好本題要運用復合函數,把f(x)分解為u=ax+2x+1和y=lgu 并結合其圖象性質求解.

切實數x恒成立.   a=0或a<0不合題意,

解得a>1.

當a<0時不合題意;    a=0時,u=2x+1,u能取遍一切正實數;

a>0時,其判別式Δ=22-4×a×1≥0,解得0<a≤1.

所以當0≤a≤1時f(x)的值域是R

 

15.分析:此問題由于常見的思維定勢,易把它看成關于x的不等式討論。然而,若變換一個角度以m為變量,即關于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的問題。對此的研究,設f(m)=(x-1)m-(2x-1),則問題轉化為求一次函數(或常數函數)f(m)的值在[-2,2]內恒為負值時參數x應該滿足的條件。

解:問題可變成關于m的一次不等式:(x-1)m-(2x-1)<0在[-2,2] 恒成立,設f(m)=(x-1)m-(2x-1),  則

解得x∈(,)

說明 本題的關鍵是變換角度,以參數m作為自變量而構造函數式,不等式問題變成函數在閉區間上的值域問題。本題有別于關于x的不等式2x-1>m(x-1)的解集是[-2,2]時求m的值、關于x的不等式2x-1>m(x-1)在[-2,2]上恒成立時求m的范圍。

一般地,在一個含有多個變量的數學問題中,確定合適的變量和參數,從而揭示函數關系,使問題更明朗化。或者含有參數的函數中,將函數自變量作為參數,而參數作為函數,更具有靈活性,從而巧妙地解決有關問題。

 

16.分析: ①問利用公式a與S建立不等式,容易求解d的范圍;②問利用S是n的二次函數,將S中哪一個值最大,變成求二次函數中n為何值時S取最大值的函數最值問題。

解:① 由a=a+2d=12,得到a=12-2d,所以

S=12a+66d=12(12-2d)+66d=144+42d>0,

S=13a+78d=13(12-2d)+78d=156+52d<0。

 解得:-<d<-3。

② S=na+n(n1-1)d=n(12-2d)+n(n-1)d

=[n-(5-)]-[(5-)]

因為d<0,故[n-(5-)]最小時,S最大。由-<d<-3得6<(5-)<6.5,故正整數n=6時[n-(5-)]最小,所以S最大。

說明: 數列的通項公式及前n項和公式實質上是定義在自然數集上的函數,因此可利用函數思想來分析或用函數方法來解決數列問題。也可以利用方程的思想,設出未知的量,建立等式關系即方程,將問題進行算式化,從而簡潔明快。由次可見,利用函數與方程的思想來解決問題,要求靈活地運用、巧妙的結合,發展了學生思維品質的深刻性、獨創性。

本題的另一種思路是尋求a>0、a<0 ,即:由d<0知道a>a>…>a,由S=13a<0得a<0,由S=6(a+a)>0得a>0。所以,在S、S、…、S中,S的值最大。

 

17.分析:異面直線PB和AC的距離可看成求直線PB上任意一點到AC的距離的最小值,從而設定變量,建立目標函數而求函數最小值。

  P

         M
A        H       B
     D     C

解:在PB上任取一點M,作MD⊥AC于D,MH⊥AB于H,

設MH=x,則MH⊥平面ABC,AC⊥HD 。

∴MD=x+[(2r-x)sinθ]=(sin+1)x-4rsinθx+4rsinθ=(sinθ+1)[x-]+

即當x=時,MD取最小值為兩異面直線的距離。

說明:本題巧在將立體幾何中“異面直線的距離”變成“求異面直線上兩點之間距離的最小值”,并設立合適的變量將問題變成代數中的“函數問題”。一般地,對于求最大值、最小值的實際問題,先將文字說明轉化成數學語言后,再建立數學模型和函數關系式,然后利用函數性質、重要不等式和有關知識進行解答。比如再現性題組第8題就是典型的例子。

 

18.分析:已知了一個積式,考慮能否由其它已知得到一個和式,再用方程思想求解。

解: 由A、B、C成等差數列,可得B=60°;

由△ABC中tanA+tanB+tanC=tanA?tanB?tanC,得

tanA+tanC=tanB(tanA?tanC-1)= (1+)

設tanA、tanC是方程x-(+3)x+2+=0的兩根,解得x=1,x=2+

設A<C,則tanA=1,tanC=2+,   ∴A=,C=

由此容易得到a=8,b=4,c=4+4。

說明:本題的解答關鍵是利用“△ABC中tanA+tanB+tanC=tanA?tanB?tanC”這一條性質得到tanA+tanC,從而設立方程求出tanA和tanC的值,使問題得到解決。

19.分析:當x∈(-∞,1]時f(x)=lg有意義的函數問題,轉化為1+2+4a>0在x∈(-∞,1]上恒成立的不等式問題。

解:由題設可知,不等式1+2+4a>0在x∈(-∞,1]上恒成立,

即:()+()+a>0在x∈(-∞,1]上恒成立。

設t=(),  則t≥,   又設g(t)=t+t+a,其對稱軸為t=-

∴ t+t+a=0在[,+∞)上無實根,  即 g()=()++a>0,得a>-

所以a的取值范圍是a>-。

說明:對于不等式恒成立,引入新的參數化簡了不等式后,構造二次函數利用函數的圖像和單調性進行解決問題,其中也聯系到了方程無解,體現了方程思想和函數思想。一般地,我們在解題中要抓住二次函數及圖像、二次不等式、二次方程三者之間的緊密聯系,將問題進行相互轉化。

在解決不等式()+()+a>0在x∈(-∞,1]上恒成立的問題時,也可使用“分離參數法”: 設t=(),  t≥,則有a=-t-t∈(-∞,-],所以a的取值范圍是a>-。其中最后得到a的范圍,是利用了二次函數在某區間上值域的研究,也可屬應用“函數思想”。

 

20.解:f(x)=cosqsinx-(sinxcosq-cosxsinq)+(tanq-2)sinx-sinq

       =sinqcosx+(tanq-2)sinx-sinq

因為f(x)是偶函數,

所以對任意xÎR,都有f(-x)=f(x),

即sinqcos(-x)+(tanq-2)sin(-x)-sinq=sinqcosx+(tanq-2)sinx-sinq,

即(tanq-2)sinx=0,

所以tanq=2

解得或

此時,f(x)=sinq(cosx-1).

當sinq=時,f(x)=(cosx-1)最大值為0,不合題意最小值為0,舍去;

當sinq=時,f(x)=(cosx-1)最小值為0,

當cosx=-1時,f(x)有最大值為,

自變量x的集合為{x|x=2kp+p,kÎZ}.

 

21.解:(1);.,
若上是增函數,則恒成立,即
若上是減函數,則恒成立,這樣的不存在.
綜上可得:.

(2)(證法一)設,由得,于是有,(1)-(2)得:,化簡可得
,,,故,即有.

(證法二)假設,不妨設,由(1)可知在

上單調遞增,故,

這與已知矛盾,故原假設不成立,即有.

 


同步練習冊答案
精品一区二区免费在线观看_国产精品久久久久久av福利软件_97成人精品区在线播放_国内成人精品一区
亚洲人亚洲人成电影网站色| 亚洲国产一区二区三区青草影视| 国产电影精品久久禁18| 久久精品在这里| 国产一区二区女| 国产精品三级电影| kk眼镜猥琐国模调教系列一区二区| 久久久久久久久久美女| 久久99精品国产.久久久久| 欧美性猛交xxxxxxxx| 一区二区欧美视频| 欧美揉bbbbb揉bbbbb| 视频一区视频二区在线观看| 91精品国产综合久久久久久漫画| 婷婷中文字幕一区三区| 欧美一区2区视频在线观看| 美女视频黄 久久| 久久久精品影视| 99精品视频在线免费观看| 一区二区在线观看不卡| 99久久er热在这里只有精品15| www久久精品| 国产suv精品一区二区三区| 2021中文字幕一区亚洲| 国产一区二区三区四 | 91视频在线观看免费| 亚洲影视资源网| 欧美大片日本大片免费观看| 粗大黑人巨茎大战欧美成人| 亚洲激情男女视频| 欧美日本在线一区| 日韩精品视频网| 日韩一区二区三区在线视频| 久久99蜜桃精品| 久久久久综合网| 国产电影一区二区三区| 中文字幕av一区 二区| 丁香啪啪综合成人亚洲小说| 亚洲欧美日韩精品久久久久| 欧美电影在线免费观看| 日本中文字幕一区二区有限公司| 国产欧美精品在线观看| 欧美日韩一级片在线观看| 国产一区二区主播在线| 一个色妞综合视频在线观看| 精品黑人一区二区三区久久| 99精品国产99久久久久久白柏| 午夜精品久久久久久久99樱桃| 久久女同互慰一区二区三区| 色婷婷av一区二区| 紧缚捆绑精品一区二区| 亚洲精品久久久蜜桃| 欧美tickling挠脚心丨vk| 色综合久久久久| 国产揄拍国内精品对白| 亚洲一区二区三区在线播放| 国产女主播视频一区二区| 欧美人妇做爰xxxⅹ性高电影| 粉嫩av一区二区三区在线播放 | 精品国产一区二区三区av性色| 91美女精品福利| 国产一区中文字幕| 偷拍与自拍一区| 麻豆免费精品视频| 久久精品国内一区二区三区| 美女在线视频一区| jlzzjlzz亚洲女人18| 欧美视频在线一区二区三区| 亚洲综合色噜噜狠狠| 久久久噜噜噜久噜久久综合| 成人av影视在线观看| 蜜桃av一区二区三区电影| 亚洲裸体在线观看| 久久久久久电影| 日韩一区二区三区电影| 欧美影片第一页| va亚洲va日韩不卡在线观看| 国产乱一区二区| 美女一区二区三区在线观看| 一区二区日韩av| 国产精品久久久久久一区二区三区| 日韩精品一区国产麻豆| 欧美日韩中文字幕一区二区| 99精品偷自拍| 成人av免费在线| 国产一区二区在线看| 蜜桃视频一区二区三区在线观看| 亚洲一级片在线观看| 国产精品久久久久久久久动漫| 亚洲精品一区二区三区福利 | 8v天堂国产在线一区二区| 日本韩国欧美在线| 99久久久免费精品国产一区二区| 国产成人精品三级麻豆| 韩国女主播成人在线| 美女视频一区二区| 日韩和欧美一区二区三区| 亚洲一区二区三区在线| 一区二区三区中文字幕电影| 一色屋精品亚洲香蕉网站| 亚洲国产精品v| 国产亚洲欧洲997久久综合 | 三级久久三级久久| 亚洲一区二区三区美女| 一区二区三区美女视频| 亚洲欧美一区二区三区孕妇| 国产精品午夜久久| 欧美韩国日本一区| 久久精品视频免费| 精品捆绑美女sm三区| 欧美一区二区三区免费大片| 91精品国产综合久久久蜜臀粉嫩| 欧美调教femdomvk| 91传媒视频在线播放| 色婷婷激情综合| 色综合天天综合| 色菇凉天天综合网| 色综合色狠狠天天综合色| 91在线视频免费观看| 99久久免费国产| 91在线观看高清| 91蜜桃在线观看| 色欧美片视频在线观看在线视频| 色老头久久综合| 欧美伊人精品成人久久综合97| 91福利区一区二区三区| 欧美四级电影在线观看| 欧美日韩精品一区二区三区| 欧美日韩免费一区二区三区| 在线看日本不卡| 欧美另类变人与禽xxxxx| 91麻豆精品国产91久久久久| 欧美一区二区三区视频| 精品剧情v国产在线观看在线| 久久综合成人精品亚洲另类欧美| 久久蜜桃香蕉精品一区二区三区| 久久久亚洲综合| 中文字幕中文在线不卡住| 日韩美女精品在线| 亚洲五月六月丁香激情| 亚洲444eee在线观看| 日本三级亚洲精品| 麻豆成人免费电影| 国产伦精品一区二区三区免费迷| 国产91在线观看| 一本大道综合伊人精品热热| 精品视频全国免费看| 欧美一区二区免费| 久久久九九九九| 国产精品久久99| 亚洲午夜久久久久久久久电影网| 日韩精彩视频在线观看| 国产精品18久久久| 97se亚洲国产综合自在线| 在线精品视频小说1| 91精品福利在线一区二区三区 | 国产精品久线在线观看| 一区二区三区美女| 免费av网站大全久久| 粉嫩嫩av羞羞动漫久久久| 色综合久久久久网| 日韩一区二区在线观看| 久久精品综合网| 一区二区在线观看免费| 日本不卡中文字幕| 国产不卡在线一区| 欧美亚洲国产一区二区三区va| 欧美顶级少妇做爰| 国产午夜一区二区三区| 一区二区国产视频| 精品一区二区三区免费播放| 成人sese在线| 欧美精品日韩一本| 中文在线一区二区 | 亚洲国产成人91porn| 久久黄色级2电影| www.日韩精品| 4438x成人网最大色成网站| 国产区在线观看成人精品| 樱花草国产18久久久久| 国内精品国产成人国产三级粉色| 99久久综合99久久综合网站| 91精品啪在线观看国产60岁| 国产欧美日韩一区二区三区在线观看| 亚洲一区在线视频| 国产一区日韩二区欧美三区| 色国产精品一区在线观看| 欧美精品一区视频| 亚洲第一成人在线| 国产成人精品亚洲777人妖| 欧美日本一区二区在线观看| 国产欧美日韩麻豆91| 日韩精品电影在线观看| 91蜜桃在线免费视频| 久久精品欧美日韩精品| 亚洲五码中文字幕| 成人aa视频在线观看| 欧美xxxxxxxx| 亚洲高清在线精品| 99视频国产精品|