題目列表(包括答案和解析)
如圖所示的長方體
中,底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的大小.
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因為∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴利用法向量的夾角公式,
,
∴
與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接
,則點
、
,
![]()
∴
,又點
,
,∴![]()
∴
,且
與
不共線,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴
,
∴
與
的夾角為
,即二面角
的大小為![]()
已知四棱錐
的底面為直角梯形,
,
底面
,且
,
,
是
的中點。
(1)證明:面
面
;
(2)求
與
所成的角;
(3)求面
與面
所成二面角的余弦值.
![]()
【解析】(1)利用面面垂直的性質,證明CD⊥平面PAD.
(2)建立空間直角坐標系,寫出向量
與
的坐標,然后由向量的夾角公式求得余弦值,從而得所成角的大小.
(3)分別求出平面
的法向量和面
的一個法向量,然后求出兩法向量的夾角即可.
在
中,滿足
,
是
邊上的一點.
(Ⅰ)若
,求向量
與向量
夾角的正弦值;
(Ⅱ)若
,
=m (m為正常數) 且
是
邊上的三等分點.,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一問中,利用向量的數量積設向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求
第二問因為
,
=m所以
,![]()
(1)當
時,則
=
(2)當
時,則
=![]()
第三問中,解:設
,因為![]()
,
;
所以
即
于是
得![]()
從而![]()
運用三角函數求解。
(Ⅰ)解:設向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因為
,
=m所以
,![]()
(1)當
時,則
=
;-2分
(2)當
時,則
=
;--2分
(Ⅲ)解:設
,因為![]()
,
;
所以
即
于是
得![]()
從而
---2分
=
=![]()
=
…………………………………2分
令
,
則
,則函數
,在
遞減,在
上遞增,所以
從而當
時,![]()
在正方體
中,如圖E、F分別是
,CD的中點,
(1)求證:
平面ADE;
(2)cos
.
【解析】本試題主要考查了運用空間向量進行求證垂直問題和求解向量的夾角的余弦值的簡單運用.
設
是直角坐標系中,x軸、y軸正方向上的單位向量,設
![]()
(1)若(
,求
.
(2)若
時,求
的夾角
的余弦值.
(3)是否存在實數
,使
,若存在求出
的值,不存在說明理由.
【解析】第一問中,利用向量的數量積為0,解得為m=-2
第二問中,利用
時,結合向量
的夾角
的余弦值公式解得
第三問中,利用向量共線,求解得到m不存在。
(1)因為設
是直角坐標系中,x軸、y軸正方向上的單位向量,設
![]()
![]()
(2)因為
![]()
即
;
(3)假設存在實數
,使
,則有
![]()
因此
不存在;
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com