題目列表(包括答案和解析)
設![]()
(1)求f(x)的周期和最大值;
(2)若x是第三象限角,且
,求tanx的值.
函數![]()
(Ⅰ)求函數
的周期和最大值;
(Ⅱ)若將函數
按向量
平移后得到函數
,而且當
取得最大值3,求
.
已知函數![]()
(Ⅰ)求函數f(x)的周期和最大值;
(Ⅱ)已知f(α)=5,求tanα的值.
最小正周期為π的函數
(其中a是小于零的常數,
是大于零的常數)的圖象按向量
,(0<θ<π)平移后得到函數y=f(x)的圖象,而函數y=f(x)在實數集上的值域為[-2,2],且在區間
上是單調遞減函數.
(1)求a、
和θ的值;
(2)若角α和β的終邊不共線,f(α)+g(α)=f(β)+g(β),求tan(α+β)的值.
已知
,
且![]()
(1)求
的周期;
(2)求
最大值和此時相應的
的值;
(3)求
的單調增區間;
一、選擇題 CAADD ABDAB CB
二、填空題
.
.
.
.
三、解答題
.




的周期為
,最大值為
.
令
,
得
,
.
∴
的單調減區間為
.
.
事件
,
表示甲以
獲勝;
表示乙以
獲勝,
、
互斥,
∴
.
事件
,
表示甲以
獲勝;
表示甲以
獲勝,
、
互斥,
∴

延長
、
交于
,則
.
連結
,并延長交
延長線于
,則
,
,
在
中,
為中位線,
,
又
,
∴
.
∵
中,
,
∴
.
即
,又
,
,
∴
,∴
,
∴
為平面
與平面
所成二面角的平面角。
又
,
∴所求二面角大小為
.
.
由
,
,
知
,
,同理
,
.
又
,
∴
構成以
為首項,以
為公比的等比數列。
∴
,即
.





.
.
,且
的圖象經過點
和
,
∴
,
為
的兩根.
∴

∴
由
解
得
∴
要使對
,不等式
恒成立,
只需
即可.
∵
,
∴
在
上單調遞減,在
上單調遞增,在
上單調遞減.
又
,
,
∴
,
∴
,
解得
,即為
的取值范圍.
.
由題意知,橢圓
的焦點
,
,頂點
,
,
∴雙曲線
中
,
,
.
∴
的方程為:
.
聯立
,得
,
∴
且
,
設
,
,
則
,
∴
.
又
,即
,
∴
,
即
.
∴
,
,
由①②得
的范圍為
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com