題目列表(包括答案和解析)
A.2k+2 B.(2k+1)(2k+2)
C.
D.![]()
數(shù)列
首項
,前
項和
滿足等式
(常數(shù)
,
……)
(1)求證:
為等比數(shù)列;
(2)設(shè)數(shù)列
的公比為
,作數(shù)列
使
(
……),求數(shù)列
的通項公式.
(3)設(shè)
,求數(shù)列
的前
項和
.
【解析】第一問利用由
得![]()
兩式相減得![]()
故
時,![]()
從而
又
即
,而![]()
從而
故![]()
第二問中,
又
故
為等比數(shù)列,通項公式為![]()
第三問中,![]()
兩邊同乘以![]()
利用錯位相減法得到和。
(1)由
得![]()
兩式相減得![]()
故
時,![]()
從而
………………3分
又
即
,而![]()
從而
故![]()
對任意
,
為常數(shù),即
為等比數(shù)列………………5分
(2)
……………………7分
又
故
為等比數(shù)列,通項公式為
………………9分
(3)![]()
兩邊同乘以![]()
………………11分
兩式相減得![]()
![]()
| 4 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
方程![]()
的解可視為函數(shù)
的圖像與函數(shù)
的圖像交點的橫坐標(biāo). 若方程
的各個實根
所對應(yīng)的點(
)(
=
)均在直線
的同側(cè),則實數(shù)
的取值范圍是
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com