題目列表(包括答案和解析)
⊙O1和⊙O2的極坐標方程分別為
,
.
⑴把⊙O1和⊙O2的極坐標方程化為直角坐標方程;
⑵求經過⊙O1,⊙O2交點的直線的直角坐標方程.
【解析】本試題主要是考查了極坐標的返程和直角坐標方程的轉化和簡單的圓冤啊位置關系的運用
(1)中,借助于公式
,
,將極坐標方程化為普通方程即可。
(2)中,根據上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。
解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.
(I)
,
,由
得
.所以
.
即
為⊙O1的直角坐標方程.
同理
為⊙O2的直角坐標方程.
(II)解法一:由
解得
,![]()
即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標方程為y=-x.
解法二: 由
,兩式相減得-4x-4y=0,即過交點的直線的直角坐標方程為y=-x
已知函數 ![]()
R).
(Ⅰ)若
,求曲線
在點
處的的切線方程;
(Ⅱ)若
對任意 ![]()
恒成立,求實數a的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。
第一問中,利用當
時,
.
因為切點為(
),
則
,
所以在點(
)處的曲線的切線方程為:![]()
第二問中,由題意得,
即
即可。
Ⅰ)當
時,
.
,
因為切點為(
),
則
,
所以在點(
)處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,
即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為
,所以
恒成立,
故
在
上單調遞增,
……12分
要使
恒成立,則
,解得
.……15分
解法二:
……7分
(1)當
時,
在
上恒成立,
故
在
上單調遞增,
即
.
……10分
(2)當
時,令
,對稱軸
,
則
在
上單調遞增,又
① 當
,即
時,
在
上恒成立,
所以
在
單調遞增,
即
,不合題意,舍去
②當
時,
,
不合題意,舍去 14分
綜上所述:
設橢圓
(常數
)的左右焦點分別為
,
是直線
上的兩個動點,
.
(1)若
,求
的值;
(2)求
的最小值.
![]()
【解析】第一問中解:設
,
則![]()
由
得
由
,得
②
![]()
第二問易求橢圓
的標準方程為:![]()
,
所以,當且僅當
或
時,
取最小值
.
解:設
,
……………………1分
則
,由
得
①……2分
(1)由
,得
② ……………1分
③ ………………………1分
由①、②、③三式,消去
,并求得
.
………………………3分
(2)解法一:易求橢圓
的標準方程為:
.………………2分
, ……4分
所以,當且僅當
或
時,
取最小值
.…2分
解法二:
,
………………4分
所以,當且僅當
或
時,
取最小值![]()
| 3 |
| 2 |
| 13 |
| 8 |
| 13 |
| 8 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com