題目列表(包括答案和解析)
已知冪函數(shù)
滿足
。
(1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)
的解析式;
(2)對于(1)中的函數(shù)
,試判斷是否存在正數(shù)m,使函數(shù)
,在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運用。第一問中利用,冪函數(shù)
滿足
,得到![]()
因為
,所以k=0,或k=1,故解析式為![]()
(2)由(1)知,
,
,因此拋物線開口向下,對稱軸方程為:
,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到![]()
(1)對于冪函數(shù)
滿足
,
因此
,解得
,………………3分
因為
,所以k=0,或k=1,當(dāng)k=0時,
,
當(dāng)k=1時,
,綜上所述,k的值為0或1,
。………………6分
(2)函數(shù)
,………………7分
由此要求
,因此拋物線開口向下,對稱軸方程為:
,
當(dāng)
時,
,因為在區(qū)間
上的最大值為5,
所以
,或
…………………………………………10分
解得
滿足題意
((本小題共13分)
若數(shù)列
滿足
,數(shù)列
為
數(shù)列,記
=
.
(Ⅰ)寫出一個滿足
,且
〉0的
數(shù)列
;
(Ⅱ)若
,n=2000,證明:E數(shù)列
是遞增數(shù)列的充要條件是
=2011;
(Ⅲ)對任意給定的整數(shù)n(n≥2),是否存在首項為0的E數(shù)列
,使得
=0?如果存在,寫出一個滿足條件的E數(shù)列
;如果不存在,說明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5。
(答案不唯一,0,1,0,1,0也是一個滿足條件的E的數(shù)列A5)
(Ⅱ)必要性:因為E數(shù)列A5是遞增數(shù)列,所以
.所以A5是首項為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故
是遞增數(shù)列.綜上,結(jié)論得證。
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對任意的
有
≤
成立,求實數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域為![]()
![]()
由
,得![]()
當(dāng)x變化時,
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當(dāng)
時,取
,有
,故
時不合題意.當(dāng)
時,令
,即![]()
![]()
令
,得![]()
①當(dāng)
時,
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)
時,
,對于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時,
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當(dāng)n=1時,不等式左邊=
=右邊,所以不等式成立.
當(dāng)
時,![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項公式
;
(2)若不等式
對任意
恒成立,試猜想出實數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當(dāng)
時,
;當(dāng)
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價于
,
當(dāng)
時,
;當(dāng)
時,
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)
時,
,成立.
假設(shè)當(dāng)
時,不等式
成立,
當(dāng)
時,
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項公式
, …………10分
, …………12分
所以對
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com