題目列表(包括答案和解析)
如圖,三棱錐
中,側(cè)面
底面
,
,且
,
.(Ⅰ)求證:
平面
;
(Ⅱ)若
為側(cè)棱PB的中點(diǎn),求直線AE與底面
所成角的正弦值.
![]()
【解析】第一問(wèn)中,利用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二問(wèn)中結(jié)合取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證
平面ABC,又EH//PO,所以EH平面
ABC ,
則
為直線AE與底面ABC 所成角,
![]()
解
(Ⅰ) 證明:由用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以![]()
………………………………………………6分
(Ⅱ)如圖, 取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,
因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證
平面ABC,
又EH//PO,所以EH平面
ABC ,
則
為直線AE與底面ABC 所成角,
且
………………………………………10分
又PO=1/2AC=
,也所以有EH=1/2PO=
,
由(Ⅰ)已證
平面PBC,所以
,即
,
故
,
于是![]()
所以直線AE與底面ABC 所成角的正弦值為![]()
![]()
| x2 |
| a2 |
| 1 |
| 2 |
(本題滿分13分)
學(xué)科網(wǎng) 已知橢圓
,直線
與橢圓交于
、
兩點(diǎn),
是線段
的中點(diǎn),連接
并延長(zhǎng)交橢圓于點(diǎn)
.
設(shè)直線
與直線
的斜率分別為
、
,且
,求橢圓的離心率.
若直線
經(jīng)過(guò)橢圓的右焦點(diǎn)
,且四邊形
是平行四邊形,求直線
斜率的取值范圍.
學(xué)科網(wǎng)
學(xué)科網(wǎng)
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com