題目列表(包括答案和解析)
已知函數
,
.
(Ⅰ)若函數
和函數
在區間
上均為增函數,求實數
的取值范圍;
(Ⅱ)若方程
有唯一解,求實數
的值.
【解析】第一問,
當0<x<2時,
,當x>2時,
,
要使
在(a,a+1)上遞增,必須![]()
![]()
如使
在(a,a+1)上遞增,必須
,即![]()
由上得出,當
時
,
在
上均為增函數
(Ⅱ)中方程
有唯一解
有唯一解
設
(x>0)
隨x變化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
極小值 |
|
由于在
上,
只有一個極小值,![]()
的最小值為-24-16ln2,
當m=-24-16ln2時,方程
有唯一解得到結論。
(Ⅰ)解:
當0<x<2時,
,當x>2時,
,
要使
在(a,a+1)上遞增,必須![]()
![]()
如使
在(a,a+1)上遞增,必須
,即![]()
由上得出,當
時
,
在
上均為增函數 ……………6分
(Ⅱ)方程
有唯一解
有唯一解
設
(x>0)
隨x變化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
極小值 |
|
由于在
上,
只有一個極小值,![]()
的最小值為-24-16ln2,
當m=-24-16ln2時,方程
有唯一解
已知函數
在
取得極值
(1)求
的單調區間(用
表示);
(2)設
,
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問利用![]()
![]()
根據題意
在
取得極值, ![]()
對參數a分情況討論,可知
當
即
時遞增區間:
遞減區間:
,
![]()
當
即
時遞增區間:
遞減區間:
,
![]()
第二問中,
由(1)知:
在
,
![]()
,![]()
在
![]()
![]()
從而求解。
解: ![]()
…..3分
在
取得極值,
……………………..4分
(1) 當
即
時 遞增區間:
遞減區間:
,
![]()
當
即
時遞增區間:
遞減區間:
,
………….6分
(2)
由(1)知:
在
,
![]()
,![]()
在
![]()
……………….10分
, 使
成立
![]()
![]()
![]()
得: ![]()
已知數列
滿足
(I)求數列
的通項公式;
(II)若數列
中
,前
項和為
,且
證明:
![]()
【解析】第一問中,利用
,![]()
∴數列{
}是以首項a1+1,公比為2的等比數列,即
![]()
第二問中,
![]()
進一步得到得
即![]()
即
是等差數列.
然后結合公式求解。
解:(I) 解法二、
,![]()
∴數列{
}是以首項a1+1,公比為2的等比數列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差數列.
![]()
![]()
![]()
![]()
函數
在同一個周期內,當
時,
取最大值1,當
時,
取最小值
。
(1)求函數的解析式![]()
(2)函數
的圖象經過怎樣的變換可得到
的圖象?
(3)若函數
滿足方程
求在
內的所有實數根之和.
【解析】第一問中利用![]()
又因![]()
又
函數![]()
第二問中,利用
的圖象向右平移
個單位得
的圖象
再由
圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
第三問中,利用三角函數的對稱性,
的周期為![]()
在
內恰有3個周期,
并且方程
在
內有6個實根且![]()
同理,
可得結論。
解:(1)![]()
又因![]()
又
函數![]()
(2)
的圖象向右平移
個單位得
的圖象
再由
圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
(3)
的周期為![]()
在
內恰有3個周期,
并且方程
在
內有6個實根且![]()
同理,![]()
故所有實數之和為![]()
1.D

2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個選擇支,A、B、D均可排除,故選C.
3.D
4.B 提示:由題意知,
M,
N,因此,
(
),又A∩B=
,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=
.
5.A 提示:由
得
,當
時,△
,
得
,當
時,△
,且
,即
所以
6.A 7.D 8.A
9.D提示:設3x2-4x-32<0的一個必要不充分條件是為Q,P=
.由題意知:P能推出Q,但Q不能推出P.也可理解為:P
Q.
10.A 11.B
12.D 提示:由
,又因為
是
的充分而不必要條件,所以
,即
。可知A=
或方程
的兩根要在區間[1,2]內,也即以下兩種情況:
(1)
;
(2)
;綜合(1)、(2)可得
。
二、填空題
13.3 14.
w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6. 16. ①④
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com