題目列表(包括答案和解析)
如圖所示的長方體
中,底面
是邊長為
的正方形,
為
與
的交點(diǎn),
,
是線段
的中點(diǎn).
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面
的法向量.∵
,
,
∴
為平面
的法向量.∴利用法向量的夾角公式,
,
∴
與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接
,則點(diǎn)
、
,
![]()
∴
,又點(diǎn)
,
,∴![]()
∴
,且
與
不共線,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴
,
∴
與
的夾角為
,即二面角
的大小為![]()
已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E,F(xiàn)分別為棱BC、AD的中點(diǎn).
(1)求證:DE∥平面PFB;
(2)已知二面角P-BF-C的余弦值為
,求四棱錐P-ABCD的體積.
![]()
【解析】(1)證:DE//BF即可;
(2)可以利用向量法根據(jù)二面角P-BF-C的余弦值為
,確定高PD的值,即可求出四棱錐的體積.也可利用傳統(tǒng)方法直接作出二面角的平面角,求高PD的值也可.在找平面角時(shí),要考慮運(yùn)用三垂線或逆定理.
已知直三棱柱
中,
,
,
是
和
的交點(diǎn), 若
.
(1)求
的長; (2)求點(diǎn)
到平面
的距離;
(3)求二面角
的平面角的正弦值的大小.
![]()
【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問中,利用ACC
A
為正方形,
AC=3
第二問中,利用面BB
C
C內(nèi)作CD
BC
,
則CD就是點(diǎn)C平面A
BC
的距離CD=
,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為![]()
解法一: (1)連AC
交A
C于E, 易證ACC
A
為正方形,
AC=3
…………… 5分
(2)在面BB
C
C內(nèi)作CD
BC
,
則CD就是點(diǎn)C平面A
BC
的距離CD=
… 8分
(3) 易得AC![]()
面A
CB,
過E作EH
A
B于H, 連HC
,
則HC![]()
A
B
![]()
C
HE為二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=![]()
二面角C
-A
B-C的平面角的正弦大小為
……… 12分
解法二: (1)分別以直線C
B、CC
、C
A為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
![]()
=(2, -
, -
),
=(0,
-3, -h(huán)) ……… 4分
![]()
·
=0,
h=3
(2)設(shè)平面A
BC
得法向量
=(a, b, c),則可求得
=(3, 4, 0) (令a=3)
點(diǎn)A到平面A
BC
的距離為H=|
|=
……… 8分
(3) 設(shè)平面A
BC的法向量為
=(x, y, z),則可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
滿足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小為![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com