題目列表(包括答案和解析)
要證
,只需證
,即需
,即需證
,即證35>11,因為35>11顯然成立,所以原不等式成立。以上證明運用了
A.比較法 B.綜合法 C.分析法 D.反證法
| 7 |
| 3 |
| 6 |
| 2 |
| 7 |
| 3 |
| 6 |
| 2 |
| 7 |
| 2 |
| 6 |
| 3 |
| 7 |
| 2 |
| 6 |
| 3 |
| 7 |
| 2 |
| 6 |
| 3 |
| 7 |
| 2 |
| 6 |
| 3 |
| 14 |
| 18 |
| 14 |
| 18 |
| 7 |
| 2 |
| 6 |
| 3 |
證明:要證
-1>
-
,
只要證
+
>
+1,
即證7+2
+5>11+2
+1,
>
,35>11.
∵35>11成立,∴原式成立.
以上證明過程應用了( )
A.綜合法
B.分析法
C.綜合法、分析法配合使用
D.間接證法
證明:要證
-1>
-
,
只要證
+
>
+1,
即證7+2
+5>11+2
+1,
>
,35>11.
∵35>11成立,∴原式成立.
以上證明過程應用了( )
A.綜合法
B.分析法
C.綜合法、分析法配合使用
D.間接證法
已知遞增等差數列
滿足:
,且
成等比數列.
(1)求數列
的通項公式
;
(2)若不等式
對任意
恒成立,試猜想出實數
的最小值,并證明.
【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列
公差為
,
由題意可知
,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設數列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價于
,
當
時,
;當
時,
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對任意
恒成立.
方法一:數學歸納法.
當
時,
,成立.
假設當
時,不等式
成立,
當
時,
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調性證明.
要證 ![]()
只要證
,
設數列
的通項公式
, …………10分
, …………12分
所以對
,都有
,可知數列
為單調遞減數列.
而
,所以
恒成立,
故
的最小值為
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com